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Abstract— Quantifying transparency requires evaluating the
transparency embedded in the various system design elements
to determine how they impact one another and influence
human-collective interactions. Prior work demonstrated limi-
tations of an abstract collective interaction. Interface designs
to address these limitations and improve human-collective in-
teraction transparency were evaluated for a sequential best-of-
N decision-making task with four collectives, each consisting of
200 individual entities. The Informed and Simple visualizations’
predictive progress bars improved transparency and the overall
human-collective team performance.

I. INTRODUCTION

Biologically inspired discrete robotic collective decision-
making (e.g., termites [1], and honeybees [2]) requires choos-
ing the best option from of a set [3] and applies to several
problem domains (e.g., [4], [5], [6]). Robotic collectives
are more resilient [7] to individual agent failure and can
scale to very large groups [8]. These promising behaviors,
particularly in inhospitable or remote environments must
respond to a human’s influence to ensure their safe operation.
The human-collective interface must leverage fundamental
visualization principles that aid accurate information percep-
tion and comprehension to inform operator actions.

Transparency, the principle of providing easily exchange-
able information to enhance comprehension [9], can support
meaningful and insightful information exchanges between
an operator and a collective. Enhancing transparency can
mitigate poor operator behaviors and improve the system’s
overall performance, but achieving transparency is chal-
lenging as collectives become larger, tasks become more
complex, and the amount of information provided increases.
Providing too much transparency may overload the operator
and negatively affect performance. Prior work demonstrated
that an abstract interface can enable a human to effectively
control four collectives of 200 agents each [10], and the
interface provided better overall transparency than tradi-
tional agent-based visualizations [11]. However, three design
limitations must be addressed to improve transparency: (1)
provide perceivable collective state information, (2) provide
predictive information about operator actions, and (3) pro-
vide the operator with the collective’s predicted state [11].

Two abstract collective interfaces differentiated by the pre-
sented predictive information address these design changes.
The Simple interface focuses on perceivable collective states
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and simple communications of the operators’ potential ac-
tions. The Informed interface also incorporates a collective’s
predicted long-term behavior. The within-subjects evaluation
focused on understanding the transparency improvements
and the benefits of predictive information.

II. BACKGROUND

Robotic collective control is often inspired by social
insects [12]–[14] (e.g. consensus Best-of-N decision algo-
rithms that mimic the nest selection [2], [15]). The best-of-
N algorithm models a collective as a colony, where agents
randomly explore an environment to identify potential new
nest (i.e., site) locations. Once a new site is identified, agents
return to the hub and disseminate that information to others.
Agents have one of four states: Uncommitted, Favoring,
Committed, and Executing. Uncommitted agents do not
prefer any site and are either exploring the environment,
or communicating with other agents in the hub. The favor-
ing agents prefer a particular site and are either assessing
that site’s value or communicating that site’s information
to others. Agents transition from the favoring state to the
committed state when a sufficient number support the same
site. The committed agent’s notify the others of the decision.
Agents transition from the committed state to the executing
state once enough agents are notified of the decision, causing
them to actively move to the new site [12].

The best-of-N algorithm can identify the locally best
resource (e.g., [16], [17]), or shortest path (e.g., [18], [19]).
Prior work demonstrated that a simple state machine algo-
rithm enables selection of a higher valued site [14], [20];
however, larger collectives can make suboptimal decisions
when the cost (e.g., distance) of the sites is asymmetric
(e.g., a significant delay exists between site discoveries)
[21], which is known as environmental bias. This bias can
heavily impact the best-of-N algorithm’s performance, as
sites located closer to the hub are easier to discover and
require less travel time to assess, which causes agents that
favor closer, potentially lower valued, sites and to recruit and
inhibit other agents more frequently. Cody et al.’s [10] state-
machine algorithm introduced mechanisms to compensate
for environmental bias: interaction delay and interaction
frequency modulation, which enable selecting the highest
valued site, even if it is the most distant.

Transparency seeks to provide an easy to use informa-
tion exchange between a human operator and collectives
to promote comprehension, intent, performance, and rea-
soning [11]. Many factors influence transparency directly
(e.g., explainability, usability, performance, trust), along with
many indirect factors (e.g., workload, situational awareness,



quantity of information) [22]. Two of the most influential
transparency factors are performance and usability [11]. Per-
formance represents a human’s ability to produce a desired
output when executing a task [23]. Usability is a multifaceted
quality that enables operators to achieve desired goals that
can be anticipated easily and do not cause confusion [24].
Usability interacts with fifteen transparency factors, making
it useful for assessing and implementing transparency within
visualizations [22]. More transparent interfaces visualize in-
formation (e.g., future collective states) in a cohesive manner
that can help an operator draw conclusions [25] and justify
actions faster [26], with lower levels of effort. Prior work
evaluated a traditional (i.e., individual-agent-based) interface
and an abstract interface for a sequential best-of-N decision-
making task with four collectives of 200 agents each [11].
Visualization transparency was measured with respect to
how the interface impacted the operator’s comprehension,
the interface’s usability, and human-collective’s performance.
The abstract interface was more transparent, as it enabled
higher performance and understanding [11].

The abstract interface’s transparency can be improved by
addressing usability related concerns. The abstract interface’s
operators relied heavily on supplementary pop-up windows
to access information required to influence the collective.
These pop-ups increased the visual clutter, and impacted
negatively operators’ ability to perceive and comprehend
information [22]. The pop-up windows’ information resulted
in executing redundant commands, indicating a lack of un-
derstanding collectives’ behavior. Design recommendations
were provided, but were not evaluated [11].

III. METHODS

Three major recommendations for addressing the limita-
tions of the collective best-of-N site selection transparency
results [11] were to provide: perceivable collective state
information, predicted outcomes of operators’ actions, and
projected collective states [22]. Four design changes to the
(Prior) abstract collective interface [10] were made to address
the first two recommendations. An updated hub icon, an
abandoned site overlay, and a new executed commands
display were developed. New information provides the ex-
pected impact of the operator’s commands on the collec-
tive’s decision-making process. These changes constitute the
Simple interface. Information modifications that indicate a
collective’s predicted long-term behavior in response to a
specific command address the third design recommendation,
resulting in the Informed interface.

A. Interface Design

The Prior abstract collective interface permitted displaying
additional information via a pop-up window for a given entity
(i.e., hub or site) using a right-click [10], (see Figure 1),
which created significant visual clutter [11]. Visual clutter
can increase operator frustration [27] and decrease usability
[11]. The redesigned hub icons retain the Roman numeral at
the top identifying the hum (i.e., I, II, III, IV) and incorporate
information directly about the collective’s current state.

Fig. 1: Example pop-up information for a hub and site.

(a) Abstract (b) Simple (c) Informed

Fig. 2: Hub icon comparisons: (a) Prior abstract hub [28],
(b) Simple interface hub, and (c) Informed interface hub.

The new hub icons indicate the collective’s most favored
site and its progression towards a decision via a vertical bar,
shown in Figures 2b and 2c (yellow and orange). The Prior
icon, shown in Figure 2a, represented the relative progress
for each state (i.e., Uncommitted, Favoring, Committed, and
Executing) using opacity, with the associated percentages
provided via the Collective’s hub pop-up window. The Sim-
ple hub’s icon (Figure 2b) is like a progress bar, with the
yellow portion representing the percentage of agents favoring
the most supported site, whose ID is in the bottom left
corner. As agents begin to favor the same site, the yellow
bar approaches the dotted line representing the 50% decision-
making threshold (100 of 200 agents), at which point agents
begin transitioning to the committed state. The top, orange
bar increases as the number of committed agents approaches
the 50% threshold, at which point these agents transition
to the execute state and begin moving to the selected site.
The Informed interface, shown in Figure 2c, also includes
predictive information. The bottom right number is the
collective’s perceived highest valued site, and the associated
blue bar represents the likelihood the collective will choose
that site, where a larger bar equals higher likelihood.

The Prior interface permitted three commands, each re-
quired selecting a hub and a site. The Investigate command
randomly selected 20 agents in the hub to investigate a
selected site. The Abandon command removed the selected
site from consideration. The Decide command, only available
once 30% of the selected collective supported the same site,
forced an immediate commitment to that site. The operator
was only permitted to cancel an Abandon command request.

The Prior evaluation’s operators issued repeated abandon
commands for the same site and often abandoned the high-
est value site, resulting in negative outcomes [11]. Design
changes were implemented to enhance understanding and
reduce the unnecessary abandon command frequency. A red



X was placed over the entire abandoned site, see Figure 3,
rather than the Prior interface’s simple red outline [10].

Fig. 3: The Abandoned site red X overlay.

A design change indicated how a command will impact
the collective’s state over time (e.g., > 1 minute). The
Simple interface’s expected impact is a visual symbol: check
mark (net positive), dash (net neutral), and not symbol (net
negative) (see Figure 4a). The Informed interface shows this
information by indicating a command’s affect via directional
arrows associated with the hub icon (see Figure 4b). The
left arrow indicates an increase or decrease in the number
of agents favoring the displayed site, and the right arrow
indicates a change in the likelihood of choosing the indicated
highest valued site. The magnitude of the impact is presented
via a lightly shaded region above the existing progress bar.

A simple heuristic predicts a commands’ impact and the
collective’s likelihood of choosing the highest valued site
based on the collective’s current state (i.e., agents supporting
each site), and the command’s affect on that state. For in-
stance, abandoning the lowest-valued site reduces the number
of sites and can increase the number of agents supporting the
remaining sites. The Simple interface’s naive algorithm uses
the highest and lowest value sites to determine whether a
command will have a positive, neutral, or negative impact
on the collective (see Figure 4a).

The Informed interface’s algorithm calculates a com-
mand’s impact on the collective as well as its affect on the
probability of selecting the highest valued target (i.e., blue
bar) and the most favored target (i.e., yellow/orange bars). An
investigate command’s expected outcome is that 20 agents
will support that site. If the selected site is the highest valued
site, the blue bar increases. If the selected site is the most
favored site, the yellow bar increases. Abandon commands
force all agents currently favoring a site into the uncommitted
interactive state and those agents’ support is distributed to
the other sites proportional to each site’s current support
level. This interface displays the maximum support for the
most favored site (i.e., yellow bar) if the selected site is
the most favored. Likewise, the maximum probability of
selecting the highest valued site (i.e., blue bar) is visible
if the highest valued site is selected. If the selected site is
not the most favored or highest valued, zero is displayed for
the most favored site or zero is displayed for the probability
of selecting the highest valued site, respectively.

B. Experimental Design

A single operator supervised four robotic collectives of
200 agents each that performed the best-of-N decision-
making task. A single decision-making task required a

collective to explore its environment and select the highest
valued site within a 500-meter range.

The within-subjects independent variables were the Simple
and Informed interfaces and problem difficulty. Trials with
the highest valued sites close to a collective’s hub were easy,
while hard trials placed the highest valued sites far away.
The interface conditions were randomized, with problem
difficulty randomized within the interface condition. A trial
ended when each collective solved two best-of-N problems,
or when a trial was over 10-minutes with six decisions.

The primary hypothesis was that the redesigned hub
visualizations, combined with the predictive information,
improve transparency. Three hypotheses investigated how the
visualizations affected the performance, understanding and
usability transparency factors [22]. Objective data and the
operators’ actions were recorded via the interface.

Hypothesis H1 predicted the redesigned interfaces allow
operators to efficiently and positively influence collectives’
long-term behavior. H2 stated the redesigned visualizations
improve the operator’s understanding of the collectives over
the Prior interface (Ha

2), with the Informed interface pro-
viding the best understanding (Hb

2). H3 predicted both
redesigned interfaces’ usability will be better than the Prior
interface (Ha

3), with the Informed interface having the best
usability (Hb

3). (H4) predicted the redesigned visualizations
enable improved operator performance (Ha

4), and the In-
formed interface improves performance the most (Hb

4).
Selection accuracy is the ratio of correct decisions (i.e.,

selecting the highest valued site) relative to the total deci-
sions. Decision time is the total time (minutes) required to
reach a decision. The Selected site value is the average site
value across all selected sites in a trial. The highest valued
site abandoned (%) is the percentage of times the highest
valued site was abandoned relative to the total number of
sites abandoned during a trial. The cancel abandon command
is the number of times an operator canceled the issued aban-
don commands. The abandoned command exceeds metric
represents the difference between the number of abandoned
commands issued and the number of sites actually aban-
doned. The decide success rate (%) represents selecting the
highest valued sites when issuing the decide command. The
collective and site left-clicks are the number of collective
and site selections, respectively for issuing commands, while
the corresponding right-clicks are the number collectives and
sites selected to view the pop-up windows.

Twelve Situational Awareness (SA) probes were asked
verbally once per minute for the first six minutes of each trial
to assess the operator’s perception (SA1), comprehension
(SA2), and projection capabilities (SA3) [29] (i.e., four per
SA level). The SA probe accuracy was the percentage of
correct responses. Overall SA (SAO) represents the percent
of the correctly answered SA probes out of twelve. The Prior
evaluation’s SA probe questions were unevenly distributed
across the three SA levels (i.e., 5 SA1, 4 SA2, and 3 SA3

probes). The current evaluation distributed the probes evenly
across all levels. Additionally, some SA2 and SA3 questions
were altered to evaluate interface design changes, which



(a) Simple interface with the negative impact icon.

(b) The Informed interface’s directional arrows indicating the level of support and selection of highest value site changes.

Fig. 4: Visual representation of the potential command’s impacts on collective outcomes.

made some SA probe questions more difficult. For instance,
Yes or No questions like “Is Site 16 likely to be selected by
Swarm III?” were replaced by “Which Swarm can select the
optimal site faster by investigating Site 16?”.

Age, education, and graphical user interface proficiency
was gathered from twenty-five participants (7 females, 15
males, and 2 non-binary). The mean age was 36.75 (standard
deviation-std. = 14.71). Six had a high school degree, eight
held an undergraduate degree, nine master’s degree, and one
a doctorate. The majority (20) indicated they use computers
more than eight hours per week. Participants video game
skill level was 4.33 (std. = 2.10) on a Likert scale (1-little
to 9-expert). Participant’s correctly answered 11.33 (std. =
5.95) of the 24 mental rotation assessment questions [30].

IV. RESULTS

The Wilcoxon signed-rank test was used to compare the
interfaces. Non-parametric statistics ensure that the outcomes
were unaffected by the distribution across operators. Bolded
results in the tables represent the best results.

The Informed interface had the highest overall selection
accuracy (see Table I), due increased hard problem accura-
cies; however, it performed worse for easy problems. The
Simple interface performed the best for the easy problems.
No significant differences existed. The Prior interface’s selec-
tion accuracies across all difficulty levels were comparable
to the Simple interface results, but with higher variability.

The objective was to select the highest valued site for each
decision. The Informed interface’s selected site values were
consistently higher than the Simple interface, regardless of
the decision difficulty. Significant effects (p < 0.01) existed
for the hard decision problems, but no other differences
existed. The Prior interface’s selected site values were the
lowest for all problem difficulties.

The Informed interface’s decision times, while similar with
no significant differences to the Simple interface, were faster
for the easy problems and slightly slower for hard problems.
The Prior interface had the fastest overall decision times, but
with substantial disparity across difficulties. This interface
was the fastest for easy problems and the slowest for the
hard problems. The Informed interface had lower selection

TABLE I: Mean (std.) performance and understandability
metrics by interface (UI) and difficulty. The cancel abandon
command metric is not available by difficulty for the Prior in-
terface. Selection Accuracy, Highest Valued Site Abandoned
and Abandoned Command Exceeded are percentages.

Metric UI Difficulty
Easy Hard Overall

Selection
Accuracy

Inform 91.8 (12.9) 87.5 (12.4) 89.7 (12.4)
Simple 96.9 (7.0) 81.0 (17.0) 89.0 (15.3)
Prior 94.4 (23.0) 81.4 (39.0) 88.4 (32.1)

Decision
Time

Inform 4.2 (1.3) 4.5 (1.4) 4.4 (1.4)
Simple 4.3 (1.5) 4.5 (1.1) 4.4 (1.3)
Prior 3.4 (1.2) 4.7 (1.2) 4.0 (1.4)

Selected
Site
Value

Inform 94.9 (7.3) 97.0 (4.2) 96.0 (6.0)
Simple 94.8 (7.8) 95.9 (5.2) 95.4 (6.6)
Prior 92.1 (5.5) 92.0 (4.5) 92.1 (5.1)

Highest
Site
Abandon

Inform 12.0 (18.1) 14.3 (18.3) 13.2 (18.2)
Simple 7.3 (17.1) 6.5 (11.7) 6.9 (14.7)
Prior 33.3 (36.0) 48.7 (36.9) 43.6 (31.9)

Abandon
Command
Exceeded

Inform 0.0 (0.0) 0.2 (0.7) 0.1 (0.5)
Simple 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
Prior 2.1 (5.1) 3.1 (7.7) 2.7 (6.3)

Cancel
Abandon
Command

Inform 0.0 (0.0) 0.0 (0.2) 0.02 (0.2)
Simple 0.1 (0.3) 0.0 (0.2) 0.1 (0.3)
Prior - - 0.4 (1.0)

accuracy with faster decisions for easy problems, but higher
accuracy with longer decision times for hard problems.

The redesigned interfaces resulted in approximately twice
as many commands per decision as compared to the Prior
interface (see Table II), indicating that operators were more
involved in the decision-making process. Abandoning lower
valued sites can improve the selection accuracy and decision
times, particularly for the hard problems. Table II also shows
operators abandoned more sites with the redesigned inter-
faces. Generally, the Informed interface had more commands
issued than the Simple interface across all difficulty levels,
with no significant differences. More commands were issued
for the hard problems across all interfaces.

The Informed interface operators abandoned the highest
valued site more frequently than the Simple interface for all
difficulty levels (Table I), which was significant (p = 0.04)
for hard problems. Both redesigned interfaces performed



TABLE II: The number of commands issued descriptive
statistics by command type and interface. Decisions for
which the human provided no commands are excluded.

UI Difficulty
Easy Hard Overall

Investigate
Command

Informed 3.2 (2.8) 4.0 (3.0) 3.5 (2.7)
Simple 2.6 (2.5) 3.2 (2.3) 3.0 (2.2)
Prior 1.7 (1.1) 2.9 (1.3) 1.9 (1.1)

Abandon
Command

Informed 1.3 (1.1) 1.2 (0.8) 1.3 (1.0)
Simple 0.8 (1.2) 1.0 (1.2) 1.0 (1.2)
Prior 0.1 (0.2) 0.2 (0.2) 0.1 (0.1)

Decide
Command

Informed 0.7 (0.3) 0.7 (0.3) 0.7 (0.3)
Simple 0.6 (0.4) 0.7 (0.3) 0.7 (0.3)
Prior 0.6 (0.4) 0.5 (0.3) 0.5 (0.3)

Total
Commands

Informed 5.1 (3.5) 5.7 (3.0) 5.4 (3.1)
Simple 4.0 (3.6) 4.9 (3.2) 4.7 (3.1)
Prior 2.5 (1.1) 2.8 (1.3) 2.6 (1.1)

substantially better than the Prior interface that had a much
higher (3-6 times) highest valued site abandoned rate.

The operator may accidentally issue the abandoned com-
mand repeatedly for the same site; hence, the percentage
of times abandon commands exceeded abandoned sites was
examined (see Table I). The Simple interface had no in-
stances of abandoning the same site multiple times, while
the Informed interface had < 1% on average. No significant
differences existed, but both interfaces reduced the excessive
abandon commands compared to the Prior interface.

TABLE III: The Operator Influenced Decisions (%) and
Decision Success descriptive statistics by interface.

UI Difficulty
Easy Hard Overall

Investigate
Influenced
Decision

Informed 85.5 (30.8) 99.0 (3.9) 88.0 (25.2)
Simple 78.1 (40.5) 94.1 (23.4) 83.5 (27.9)
Prior 89.9 (17.6) 92.9 (15.1) 91.4 (14.3)

Decision
Success

Informed 95.1 (8.2) 93.5 (7.8) 93.7 (8.2)
Simple 98.8 (3.1) 91.9 (10.3) 94.7 (9.0)
Prior 98.6 (3.2) 94.8 (7.6) 96.9 (4.2)

The cancel abandon command nullifies an issued abandon
command for a particular collective and site. The Informed
interface generally had fewer cancel abandon commands
compared to the Simple interface across all difficulty levels;
however, no significant effects existed. Overall, operators
using the Prior interface canceled the abandoned command
more frequently than the redesigned interfaces.

The redesigned interfaces’ operators influenced (issued ≥
1 command) fewer easy and overall decisions, but influenced
more hard decisions than the Prior interface (see Table III).
This observation was especially true for the Informed inter-
face, where operators influenced over 99% of the decisions
with less variability. No significant differences were found.

Decide success was 100% when the operator decided
the highest valued site, 66% when deciding the second
highest, 33% for the third highest, and 0% for the lowest
(shown in Table III). Overall, the Prior interface had the best
decide success rate. Among the redesigned interfaces, Simple

had higher decide success overall and for easy problems,
while the Informed interface’s decide success was higher for
hard problems. No significant differences existed. While the
Informed interface had a slightly lower overall decide success
rate, it had the best selection accuracy overall and for hard
decisions, with the highest overall selected site values.

TABLE IV: Collective and site left- and right-clicks mean
(std.) by interface and difficulty.

Clicks UI Difficulty
Easy Hard Overall

Collective
Left

Informed 78.8 (32.8) 83.3 (22.5) 81.0 (28.2)
Simple 64.6 (43.4) 68.5 (36.8) 66.6 (40.3)
Prior - - 122.0 (47.4)

Collective
Right

Informed 26.5 (22.6) 28.5 (21.4) 27.5 (22.0)
Simple 30.3 (40.7) 45.0 (53.1) 37.7 (47.9)
Prior - - 30.6 (32.0)

Site
Left

Informed 70.6 (26.3) 72.2 (21.3) 71.4 (23.9)
Simple 68.5 (31.1) 65.0 (30.6) 66.7 (30.9)
Prior - - 185.6 (64.3)

Site
Right

Informed 10.9 (10.5) 11.5 (15.6) 11.2 (13.3)
Simple 13.1 (16.8) 11.9 (11.0) 12.5 (14.2)
Prior - - 82.4 (60.2)

Left- and right-clicks were examined for both the sites,
and the collectives’ hubs. The collective and site clicks
descriptive statistics are provided in Table IV. The Simple
interface had fewer left-clicks, but more right-clicks across
all problem difficulties. The results across difficulty levels
were significant (p = 0.04) for the collective left-clicks
between the redesigned interfaces. These differences indicate
that design changes (e.g., the blue likelihood bar and the
expected impact directional arrows) permitted examining a
command’s expected impact on the hub without relying on
the supplemental pop-up window information (figure 1. The
number of clicks were not analyzed by difficulty for the Prior
study, but the overall number of left- and right-clicks were
1.5 to 7.3 times higher than the redesigned interfaces.

TABLE V: SA probe accuracy (%) mean (std.) by interface
and difficulty aggregated across operators.

Level UI Difficulty
Easy Hard Overall

Overall
SA

Informed 65.8 (24.2) 62.0 (19.2) 64.4 (16.6)
Simple 66.7 (22.0) 60.9 (15.2) 63.8 (15.3)
Prior 91.9 (11.6) 87.6 (15.4) 89.9 (13.7)

SA
Level 1

Informed 67.4 (31.7) 73.9 (32.5) 71.4 (22.5)
Simple 78.3 (24.8) 56.5 (37.0) 67.4 (24.9)
Prior 93.4 (14.8) 89.6 (17.9) 91.7 (16.5)

SA
Level 2

Informed 65.2 (37.4) 52.2 (37.5) 58.0 (29.0)
Simple 65.2 (31.0) 63.0 (36.8) 64.1 (28.4)
Prior 88.2 (20.4) 88.0 (19.9) 88.1 (20.3)

SA
Level 3

Informed 65.2 (37.4) 60.9 (36/0) 63.8 (26.3)
Simple 56.5 (39.9) 63.0 (30.3) 59.8 (29.3)
Prior 95.3 (20.9) 84.3 (35.4) 90.2 (29.0)

Overall, SA probe accuracies (Table V) were similar for
the redesigned interfaces with no significant differences.



The Simple interface’s SA1 accuracy was 11% higher than
the Informed interface for the easy problems, while the
corresponding SA1 accuracy for hard problems was 17%
higher. The Informed interface’s SA3 accuracy for the easy
problem was 9% higher than the Simple interface. The
redesigned interfaces consistently led to lower SA accuracy
(up to 30%) than the Prior interface across all SA levels.

V. DISCUSSION

Hypothesis H1 predicted that the redesigned interfaces
support operators’ efficient and positive influence on the
colony’s long-term behavior. Operators with the redesigned
interfaces better understood the collectives and how to in-
fluence the algorithm’s outcome, even though the decision
times and SA results did not improve. Each hub always chose
from four sites, which was harder than the Prior interface’s
evaluation. The Prior evaluation removed sites once they
were selected, which is known to a easier decision problem.

Hypothesis Ha
2 predicted that the redesigned interfaces

provide a better understanding of the collectives, which was
supported. Operators were expected to abandon lower valued
sites to expedite the decision-making process. However, op-
erator’s with the Prior interface abandoned the highest valued
sites more frequently, leading to more frequently canceling
the abandon commands. The redesigned interfaces’ ability
to predict the results of a command mitigated this issue,
enabling operators to better understand how their actions may
affect decision-making. However, the SA probe accuracies
for the redesigned interfaces were lower, on average.

Overall, the collectives faced more difficult decision prob-
lems. The Prior interface’s evaluation had exactly sixteen
sites (i.e., four per collective), and the number of sites
decreased after collectives made their first decisions resulting
in fewer sites for the second decisions, where the differences
between these sites’ values (i.e., decision difficulty) was
not enforced. The current evaluation required collectives
to choose between at least four sites and maintained the
problem difficulty for all decisions. These differences made
the decision problems harder and made it harder for operators
to attain good SA. As well, the SA probe questions were
substantially more difficult than the Prior evaluation, which
also negatively influenced SA probe accuracy.

Hypothesis Hb
2 predicted the Informed interface will im-

prove understandability over the Simple interface, which was
not supported. The Informed interface had a higher number
of cancel abandon commands and the highest valued site
abandoned percentage. The Informed interface’s directional
arrows may have been confusing, while the Simple inter-
face’s discrete symbol presentation (i.e., checkmark, dash,
and not symbol) was easier to perceive and comprehend.

Hypothesis Ha
3 predicted that the redesigned visualizations

will enhance usability, which was supported. Operators of
the Prior interface repeatedly issued additional abandoned
commands for sites they had already abandoned, meaning
these additional commands had no additional impact on the
hub’s decision-making process. Overlaying a X on the site
in addition to the red outline, and separating the request

monitoring area into two panes reduced the abandon com-
mand exceeds drastically, thereby enhancing usability. The
new Hub icon design and the expected command impact
design changes also enabled the operators to rely less on
the supplemental pop-up window information.

Hypothesis Hb
3 predicted that the Informed interface will

enhance the usability significantly over the Simple interface.
This hypothesis was only partially supported, as the Informed
interface results indicated that operators better understood
how the issued commands affected the decision-making, and
aided in answering the SA probe questions without relying
on the pop-up windows, which resulted in less visual clutter.

Hypothesis Ha
4 predicted that operators using the re-

designed interfaces will have higher performance than those
using the Prior interface, which was partially supported. The
redesigned interfaces’ operators more accurately selected
similar or higher valued sites with less variability; however,
the Prior interface’s decision times were faster due to the
decision problems becoming easier as the trials progressed.

Favoring and Committed are the most important states
informing how close the collective is to a decision. Dis-
playing these states’ progress bar, and the expected impact
of potential commands encouraged operators to issue posi-
tive decision-making commands (e.g., investigating highest
valued and abandoning lower-valued sites) more frequently,
and prevented issuing commands with a negative impact.
The redesigned interface’s improved performance over the
Prior interface. The redesigned interfaces’ slower decision
times can be attributed to the increased problem difficulty,
while the Prior interface’s evaluation resulted in some hubs
selecting from three sites or easier decision problems as
trials progressed. Thus, the redesigned interfaces allowed
the operators to efficiently and positively influence collective
decision-making, even with more challenging problems.

Hypothesis Hb
4 predicted that the Informed interface will

result in higher performance than the Simple interface, which
was not supported. The Informed interface had lower selec-
tion accuracy with faster decision times for easy problems,
higher selection accuracy with longer decision times for hard
problems, and overall slightly better selected site values.
It appears the operators preferred the simpler interface’s
discrete symbol information for easy problems, while the di-
rectional arrows with the predictive blue bar were beneficial
for harder problems. Generally, longer decision times led to
a higher selection accuracy, as devoting more time to ensure
high task performance is a commonly observed trade-off.

The redesigned interfaces provided better transparency,
as the human-collective team performed better with high
understandability and usability. Presenting the most favored
site and the collective’s progress throughout the decision-
making process via the progress bars enabled understanding
the collective’s state and helped identify necessary inter-
ventions. The reliance on collective and site information
pop-up windows was common with the Prior interface. An
ideal visualization must provide necessary supplementary
information, but require minimal reliance on on the pop-
up windows. The progress bar representation reduced the



operators’ reliance on pop-up windows, and improved the
collective decision-making performance.

Providing the expected impact information incentivized
operators to take positive actions more frequently and avoid
negative actions, leading to better operator comprehension
and performance. Both the Informed and Simple interfaces
had similar transparency, which may be attributed to using
the same heuristic-based algorithm for deriving the expected
impact information. A collective is a highly probabilistic sys-
tem with complex inter-agent dynamics; therefore, predicting
future behaviors using only the current state’s heuristics may
have been inaccurate and unuseful.

VI. CONCLUSION

Quantifying transparency requires evaluating the trans-
parency embedded in the design elements to determine
their impact on one another and their influence on human-
collective interactions. Visualizations with Informed and
Simple predictive information were compared to a Prior
abstract collective visualization for a best-of-N decision task
with four collectives, each consisting of 200 individual col-
lective entities. The Prior abstract hub visualization’s opacity
challenged operators’ ability to perceive and comprehend
information, as some key information was hidden. The re-
designed visualizations’ progress bar improved transparency
and the overall human-collective team performance. Provid-
ing the operator with information related to a command’s
expected impact had a net positive transparency outcome,
which supports visualizations that incorporate projections
into human-collective interface designs.
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