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ABSTRACT
Effective collaboration between humans and robots hinges on the
robot’s ability to comprehend its human teammate. This collabo-
ration demands the development of machine learning models that
bridge the gap between human physiological signals and their men-
tal states. However, the challenge lies in developing generalizable
machine learning models using data collected in controlled exper-
imental conditions. This manuscript proposes a set of principles
for designing human subject evaluations, emphasizing the crucial
balance between experimental control and ecological validity while
also balancing fundamental machine learning trade-offs.
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1 INTRODUCTION
Successful human-robot teaming consists of humans and robots
collaborating to achieve tasks in uncertain, dynamic environments.
Deploying robots alongside humans in these environments will
require the robots to have a robust and dynamic understanding
of their human teammates. Endowing the robot with these capa-
bilities is most commonly accomplished by developing machine
learning models. For example, workload estimation models and task
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recognition models learn the relationships between the human’s
physiological signals and their mental and physical state.

Collecting data to train these models requires conducting human
subject evaluations that mimic the desired applications domain (e.g.,
disaster response). Many evaluations are conducted under tightly
controlled experimental conditions to ensure the precise manipula-
tion of independent variables. However, prioritizing experimental
constraints over ecological validity inevitably results in machine
learning models that fail to generalize in real world settings. This
lack of generalizability is the result of training data that is not fully
representative of real world conditions.

Designing human subject evaluations such that resulting ma-
chine learning models generalize effectively requires carefully an-
alyzing the machine learning and human-robot interaction (HRI)
considerations that are often ignored for the sake of experimen-
tal control. These considerations are discussed and principles for
designing HRI domain machine learning models that generalize
more effectively are presented. These principles highlight the im-
portance of prioritizing the ecological validity of human-robot
teaming dynamics and experimental conditions, while also balanc-
ing key machine learning trade-offs. These principles also enable
experimenters to better understand the extent to which their mod-
els generalize (i.e., performance in the real world) and the way in
which their models generalize (e.g., across individuals, across tasks).

2 RELATEDWORK
A major takeaway from the machine learning community is the im-
pact of data quality and modality on machine learning models [20].
Acknowledging these factors is imperative to draw meaningful
conclusions and to understand how models can be deployed. These
factors are particularly important when building machine learning
models of human behavior, as these models can only be developed
using data from human subject evaluations (i.e., small datasets).
Experimental design has been extensively explored in structured
environments, where the primary focus has been on evaluating
the HRI dynamics under specific experimental conditions [11, 13].
Prior work emphasized the limitations of relying on a single eval-
uation method, advocating for integrating diverse methods (e.g.,
psychological measures, performance metrics, and behavioral mea-
sures) [3]; however, little work has been done to understand how
these factors impact resulting machine learning models.
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Successfully developed workload estimation [4] and emotion
recognition models [22] have drawn attention to the importance
of recognizing physiological changes in the human’s mental states.
These approaches are sensitive to sensor noise and the variability
of human physiology [5]. Constructing models is also heavily influ-
enced by the inconsistencies between experimental conditions and
the real world. Task design is critical to ensure tasks are ecologically
valid. The task complexity adds another layer of consideration, em-
phasizing the necessity of clearly defining the context to enhance
the realism and relevance of interaction scenarios [14]. This synthe-
sis of insights from the literature sets the stage for a more holistic
approach to designing HRI evaluations, aiming to capture complex
human-robot interactions in varied and realistic settings.

3 MOTIVATION
Enhancing a robot’s capacity to estimate different aspects of its
human teammates (e.g., task execution, situational awareness, work-
load, affect), such that it can make predictions or adaptations to
accommodate that teammate, will enhance the efficacy of human-
robot teams in real world problem domains. Developing machine
learning models capable of modeling these aspects is inherently
complex due to the natural variability of human behavior [27]. Fur-
ther, collecting data sufficiently representative of these behaviors is
also difficult. The experimental design must consider how empha-
sizing ecological validity impacts the experimental design (e.g., data
collection, human-robot teaming dynamics), key machine learning
algorithm choices, and resulting model robustness.

3.1 Experimental Design Considerations
Achieving real world generalizability with HRI machine learning
models requires evaluations that adequately reflect the dynamic,
uncertain nature of the real world while maintaining sufficient ex-
perimental control to properly manipulate independent variables.
Striking this balance is a challenge that requires considering ecologi-
cally valid human-robot teaming dynamics, sufficient task diversity,
and appropriate data collection procedures.

Ecological validity refers to the degree to which an experiment
can be used to predict behaviors in real world settings [13]. There
are many different considerations experimenters must make to en-
sure the ecological validity of their evaluations. Ecological validity
for human-robot teams is achieved by ensuring sufficient realism
for all human-robot teaming dynamics. Enumerating the full spec-
trum of human-robot teaming dynamics that must be considered
is outside the scope of this manuscript, but a few are important to
highlight. First, the division of labor and interactions between the
human and the robot must reflect real world human-robot teams.
Properly designed robot roles are especially difficult to achieve in
Wizard-of-Oz studies [21], as the remote operator must strive to
be consistent with how the robot is piloted and avoid misrepre-
senting the robot’s real world function. Second, tasks performed by
the human-robot team must be reflective of real world conditions.
Task realism is critical to ensuring that the experiment will evoke
the corresponding behavior and performance, such that the data
collected is useful for developing the machine learning model.

An equally important component is the task diversity. Conduct-
ing an evaluation with a single ecologically valid task constrains

the conditions in which it is appropriate to deploy the resulting
machine learning model. Human-robot teams perform a wide range
of tasks that vary based on task coupling, duration, team expertise.
HRI evaluations must capture, at least in part, the broad spectrum of
real world tasks to successfully develop machine learning models.

Complex HRI evaluations must also consider how these machine-
learning models will be deployed. Specifically, collecting data in
experimental conditions must not rely on sensors or systems that
cannot be practically deployed in realistic environments. Workload
estimation and task recognition algorithms map physiological sig-
nals to the corresponding aspects of the human’s state. Measuring
these signals with static sensors (e.g., cameras), or sensors suscepti-
ble environmental noises (e.g., EEG [25]), prevents deploying these
algorithms in unstructured, real world environments; thus, wear-
able sensors must be utilized. Real world considerations like these
must be made when designing experiments.

3.2 Machine Learning Considerations
Collecting enough data to capture the full range of human behavior
is intractable; thus, HRI machine learning models must be con-
structed using relatively small datasets. These constraints consti-
tute a low data regime and make the application of larger machine
learning models impractical [7, 15]. Small datasets are rarely fully
representative of the true distribution for a given problem domain,
especially when collected in tightly controlled experimental envi-
ronments. There are three key machine learning issues that must
be considered when learning with small datasets: Long-tail distri-
butions, Out-of-distribution (OOD) data and evaluation overfit.

A common problem with task recognition models is long-tailed
data distributions. These distributions are characterized by certain
tasks that account for the vast majority of data (e.g., ≥ 80% [28]);
thus, key tasks are under represented within the dataset. Training
machine learning algorithms on such imbalanced datasets will bias
the algorithm and lead to performance degradation [16]. Conduct-
ing a task analysis [27] of human-robot teaming tasks often reveals
that there are many subtasks that occur infrequently, especially in
highly dynamic and uncertain real world domains, such as disaster
response. Designing experiments such that the ecological valid-
ity of these tasks is maintained, but sufficient data is generated to
mitigate this natural imbalance is a challenge.

Data that is characterized by a different distribution than the
training datasets is considered to be OOD [24]. Enumerating the
broad scope of ways that a distribution can change such that the
machine learning model is affected is outside the scope of this
manuscript [19]; however, this problem is summarized. Broadly,
machine learning is the process of learning a function, 𝑓 (𝑥), that
maps from a domain (i.e., features),𝑋 , to a range (i.e., labels),𝑌 . Any
meaningful changes to either 𝑋 , 𝑌 , or 𝑓 (𝑥) between the training
dataset and the testing dataset constitute a meaningful distribution
shift. These problems are prevalent in HRI application domains.
One example is training a model on convenience participants and
deploying the model on expert users. Another example is training a
model on data collected from a single human, single robot team and
deploying it on a single-human, multi-robot team. Understanding
the impact of these differences and developing models that are
robust to these changes is an active area of research.
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Evaluation overfit simply means accidentally overfitting to the
unseen biases within the dataset. An evaluation’s tasks may be
ecologically valid, but intrinsic aspects of those tasks (e.g., robot’s
voice, capabilities) may bias participant behavior in unexpected
ways. These biases may not be noticeable in cross-validation proce-
dures, such as leave-one-subject-out [10], as it is present in all data
points. Additional validation is necessary to ensure these issues are
avoided. All three of these issues are exasperated by humans’ indi-
vidual differences. Fundamentally, human-centric evaluations are
noisy. Individual humans have variable physiological responses to
a task’s demands and may employ different strategies to complete
that task. These individual differences make building machine learn-
ing models of human behaviors and states for real world problem
domains difficult. Additional considerations need to be made for
increased sensor noise over time due to human factors (e.g., fatigue),
sensor issues (e.g., slippage, drift), and environmental changes.

4 PRINCIPLES
Designing complex HRI evaluations that can be used to train ma-
chine learning models for real world application domains requires a
broad range of experimental and machine learning considerations.
The experiment itself must be adequately representative of the ap-
plication domain, practical considerations (e.g., sensor deployment)
must be considered upfront, and the extent to which the machine
learning models can applied must be thoroughly understood.

4.1 Principle 1: Ecological Validity
Ecological validity refers to the real world generalizability of an
evaluation (e.g., tasks, interactions, robot’s capabilities, form [13]).
Overly constrained experiments create artificial human-robot team-
ing dynamics, which hinders real world generalization and intro-
duces bias into the machine learning models. The following sub-
set of experimental design factors must be considered in order to
achieve ecologically valid human-robot teaming dynamics.

Real world human-robot teams can be deployed for long periods
of time (i.e., hours, days). Data based on short-duration tasks (e.g.,
ten minutes) does not reflect a human’s behavior and perception
changes over the longer-duration real world tasks. An evaluation’s
ecological validity and machine learning models’ generalizability
are heavily impacted by evaluation tasks’ durations.

Task density is a common variable to modulate workload [26];
however, task densities necessary to manipulate the evaluation’s
independent variables may rarely be encountered in the real world.
These uncommon task densities may impact human behavior, and
interactions with robots may bias the underlying patterns the ma-
chine learning model discovers and hinder generalizability.

Ensuring that a fully autonomous robot can interact with a hu-
man in a reliably safe manner is challenging. The Wizard-of-Oz
experimental technique [21] allows experimenters to remotely op-
erate the robot as needed to ensure safe and consistent behavior, as
well as respond to any unforeseen scenarios (e.g., maneuvering the
robot during navigational failures). However, operating the robot in
a human-like manner may compromise the evaluation’s ecological
validity. Developing specific criteria for how the human operates
the robot, such that it mimics autonomous behaviors, are essential
when using Wizard-of-Oz techniques; otherwise, machine learning

models may learn human-robot teaming dynamics uncharacteristic
of real world teams with autonomous robots.

The robot’s capabilities and physical form significantly alter the
tasks and interactions that can be performed. The tasks and inter-
actions directly inform the human’s response to the evaluation’s
demands, which can artificially alter the human’s behavior. These
behavioral changes may constitute a meaningful difference in the
resulting machine-learning model. Furthermore, the team composi-
tion (i.e., the number of robots and humans) significantly impacts
human-robot teaming dynamics. Gathering data for different team
compositions may constitute a meaningful difference, preventing
the generalization of the machine learning model.

Evaluating the ecological validity of the experimental design
factors is critical to developing generalizable machine learning
models; however, this list is not comprehensive. Ensuring that all
environmental conditions, human-robot teaming dynamics, and
participant-experiment interactions are grounded in the intended
application domain is central to minimizing the artificial aspects of
an evaluation; thus, maximizing ecological validity.

4.2 Principle 2: Variety in Tasks and Team
Dynamics

Machine learning models are only as expressive as the datasets
used to train them. Ecologically valid evaluations ensure that data
generated is representative of real world human-robot teaming, but
machine learning models trained on a subset of tasks are likely
to overfit to specific aspects of those tasks. Therefore, evaluations
must be designed to reflect the real world variability of a given
application domain. Designing experiments that capture this di-
versity must abide by strict principles to ensure that Principle 1 is
not violated. First, an evaluation must have clear defined HRI roles
(e.g., supervisor, peer) assigned to all humans operating in the team.
Second, the evaluation must ensure that the tasks executed by a
team are appropriately grounded in the respective HRI roles and
that tasks represent a given application domain’s diversity.

Generally, human-robot teaming diversity is equally important
as task diversity. For example, a peer-based human-robot team
must accomplish a variety of tasks that are independent, loosely-
coupled, and tightly-coupled [18]. Machine learning models that
make accurate estimates across these scenarios must be trained on
data that fully captures these dynamics. Capturing this variability is
best accomplished through domain expertise or collaboration with
domain experts, as selecting tasks that fully represent the human-
robot teaming dynamics is difficult and varies across domains.

An important teaming aspect for complex HRI evaluations is an
evaluation’s task duration. Most evaluations consists of artificially
short tasks and it is difficult to capture meaningful HRI data when
interactions last less than a minute. Experiments must incorporate
longer tasks, or longer time periods consisting of a sequence of
short duration tasks, to be representative of the real world. Models
built to estimate such human-based responses need to account for
these complexities to afford application to real world domains.

4.3 Principle 3: Sensor Suite Selection
Collecting data across the diverse tasks performed by human-robot
teams hinges on selecting the appropriate set of sensors that can
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accurately capture the human’s interactions, but can also be suc-
cessfully deployed in unstructured, dynamic environments. Sensors
that restrict the human-robot team’s interactions spatially (e.g.,
environmentally embedded cameras), temporally (e.g., sensors with
low battery life), or computationally (e.g., require high storage)
must be avoided when possible and viable alternatives must be
considered. For example, using whole-body IMU-based motion
tracking, instead of optical motion capture systems, allows partici-
pants to move freely. Sensors used in experimental conditions to
collect training data must be easily deployed in realistic settings;
otherwise, the resulting machine learning cannot be used.

Many wearable sensors exhibit increased sensor noise and vari-
ability over their non-wearable counterparts (e.g., stationary vs.
mobile eye-trackers [8]). Using multiple sensors is necessary to
prevent machine learning models from over relying on a single
noisy sensor. Further, sensors must capture the full spectrum of
human activity so that the developed machine learning models can
be used in diverse scenarios. Sensors required to asses the human’s
state for cognitive tasks are substantially different than the sen-
sors required for physical tasks [1]. Sensor suites allow machine
learning models to learn non-trivial interactions between multiple
aspects of the human’s mental and physical state. Experimenters
must considered the real world constraints of utilizing a particular
sensor suite and the extent to which that sensor suite fully captures
the desired aspect of the human’s behavior.

4.4 Principle 4: Robust Model Validation
Deploying machine learning models of human behavior in realistic
settings requires a comprehensive understanding of the circum-
stances in which these models perform well, which is achieved
through robust model validation. Prior work designed human sub-
ject evaluations to build machine learning models capable of esti-
mating latent properties of the human’s internal state (e.g., work-
load [5], situational awareness [12]). These latent properties are
not directly observable; therefore, they are difficult to verify. Ensur-
ing that the machine learning models’ output accurately reflects a
human’s internal state is paramount to the successful deployment
of machine learning models in real world human-robot teams.

Ground truth values collected during an evaluation of the models
must be derived from objective sources whenever possible. Relying
on subjective questionnaires to develop models automatically en-
codes the reporting errors and inherent biases [17]. These errors
and biases introduce additional noise into the machine learning
model’s training process, making it more difficult to learn the re-
lationship between the external aspect (e.g., physiological signals)
and latent properties of the human’s state.

Additionally, validating a machine learning model using stan-
dard techniques [23] (e.g., leave-one-subject-out) only measures
the model’s ability to generalize within the evaluation’s context.
These techniques do not speak to the model’s utility in unknown
scenarios. Specifically, evaluations may possess unexpected biases
inherent in the experimental conditions (e.g., tasks, human-robot
interactions), which machine learning models will inadvertently
learn. Validating machine learning models in a separate evaluation,
or in a real world deployment, helps experimenters verify the extent

which the machine learning model can generalize and ensures that
the model did not unintentionally learn these inherent biases.

4.5 Principle 5: Dataset Composition Trade-Offs
Effective use of machine learning models in real world HRI do-
mains requires flexible models that account for human’s individual
differences. The dynamics of task execution vary day-to-day, be-
tween individuals, and are influenced by external factors. Machine
learning models developed in rigid experimental environments are
unlikely to account for these individual differences due to inter-day
and environmental variances or differences across individuals. Real
world problem domains are inherently imbalanced, as some tasks
naturally occur more frequently than others. Datasets that exhibit
this level of variability and imbalance will exhibit either i) a long-
tail distribution, where certain classes (e.g., tasks) account for the
vast majority of the data, while all the other classes are underrep-
resented, or ii) OOD data, where the training and testing data are
drawn from different distributions, even though the context, task
objective, and environment remain fairly similar.

Overcoming these challenges can be solved experimentally or
algorithmically, but with trade-offs. For example, an experimental
solution to long-tailed distributions explicitly incorporates infre-
quent tasks, which may result in compromising ecological validity.
Downsampling overrepresented classes [6] and weighting under-
represented classes [9] are both algorithmic solutions that preserve
ecological validity, but neither solution is guaranteed to overcome
performance degradation due to class imbalances. Likewise, exper-
imentally incorporating untrained tasks (i.e., OOD data) for the
purposes of using non-standard machine learning methods comes
with similar trade-offs. The degree of difference between trained
and untrained tasks directly impacts the model’s ability to scale
to untrained or novel real world tasks [2]. These trade-offs must
be considered, and the corresponding decision must be explicitly
discussed in order for future applications to understand the circum-
stances in which the machine learning models will generalize.

5 CONCLUSION
Principles for designing evaluations that capture the complex dy-
namics of human-robot teams and result in generalizable machine
learning models were presented. Complex HRI evaluations are re-
quired for building machine learning models that enable a robot to
understand a human’s state, such that the two can effectively collab-
orate in dynamic, uncertain domains. These principles are an initial
attempt at enumerating means of addressing these difficulties.
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