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Abstract—Human teammates in human-robot teams operate
in uncertain, dynamic environments to accomplish a wide range
of tasks. These tasks often involve multiple activity components:
gross motor, fine-grained motor, tactile, cognitive, visual, speech
and auditory. Most existing task recognition algorithms focus pri-
marily on detecting tasks involving gross and fine-grained motor
components; however, some tasks (e.g., assessing a victim’s triage
level) may involve little to no motor components. Robots need
a holistic understanding of a task’s various activity components
in order to be aware of the human’s current task state. The
presented algorithm detects the tasks’ visual activity component
for a human-robot team operating in a non-sedentary supervisory
environment. Metrics acquired from a wearable eye tracker and
head motion tracker are used to train the machine learning-based
visual task recognition algorithm.

Index Terms—Visual task recognition, Human-robot interac-
tion, Human-machine teams, Wearable sensors

I. INTRODUCTION

Human-robot teams (HRTs) collaborating to achieve tasks
under various conditions, especially in unstructured, dynamic
environments, will require robots to adapt autonomously to a
human teammate’s state (e.g., workload level). An important
element of such adaptation is the robot’s ability to infer
the human teammate’s current tasks, as understanding human
actions and their interactions with the world provides the robot
with more context as to what type of assistance the human may
need. Environmentally embedded sensors, such as cameras
(e.g., motion capture, depth) are infeasible for task recognition
in unstructured environments; however, employing wearable
sensors in such environments is a viable alternative.

Human teammates perform a wide variety of tasks using a
breadth of capabilities. Depending on task complexity, mul-
tiple activity components can be involved: gross motor, fine-
grained motor, tactile, cognitive, visual, speech and auditory.
For example, the triaging a victim task aggregates cognitive,
visual and possibly speech and auditory (if the victim is con-
scious) components in order to assess the victim’s triage level
prior to taking any necessary medical steps (e.g., applying a
tourniquet or performing cardiopulmonary resuscitation).

Most existing task recognition algorithms focus primarily on
detecting tasks involving physical movements; however, some
tasks are more dependent on other activity components and

involve limited physical movement. Robots need a holistic un-
derstanding of a task’s various activity components in order to
detect the human’s current tasks accurately. This manuscript’s
primary contribution is an algorithm for recognizing visual
tasks in a non-sedentary environment using a wearable eye
tracker and a head worn motion tracker. The algorithm is
evaluated by identifying the visual tasks performed by HRTs
operating in a non-sedentary supervisory environment.

II. RELATED WORK

Eye movement is closely associated with humans’ goals,
tasks, and intentions, as almost all tasks performed by visually
unimpaired humans involve visual observation. This associa-
tion makes oculography a rich source of information for task
recognition. Fixation, saccades, blink rate, and scanpath are
the most commonly used metrics for detecting visual tasks
[1]–[3], followed by electrooculography signals [4]–[6].

Classical machine learning using eye gaze metrics (e.g., sac-
cades, fixation, and blink rate) for visual task recognition was
pioneered by Bulling et al. [1]. Statistical features extracted
from the gaze metrics, as well as the character-based represen-
tation to encode eye movement patterns, were used to train a
Support Vector Machine (SVM) classifier to detect five office-
based tasks. Various visual task recognition algorithms were
developed focusing solely on detecting reading tasks using
classical machine learning (e.g., [7], [8]). The complexity of
the “reading” task varied from as rudimentary as detecting
reading or not [8], to as complex as distinguishing between
reading thoroughly or skimming through the text [7].

Other algorithms apply deep learning using electrooculog-
raphy potentials to detect visual tasks [6], [9]. Two deep
networks, a convolutional neural network and a long short-
term memory, recognized reading in a natural setting (i.e., out-
side the laboratory). Three metrics (i.e., blink rate, 2-channel
electrooculogram signals, and acceleration) from wearable
glasses were used to train the deep learning models. The
algorithms detected common visual tasks in office or desktop-
based environments with sedentary participants. None of ex-
isting algorithms detected the visual tasks within context of
HRTs, where the human teammates can be in constant motion,
operating in an uncertain, dynamic environment.
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III. METHODOLOGY

The supervisory task environment consisted of a modified
version of the NASA Multi-Attribute Task Battery (MATB-
II) [10], which required a human operator to supervise a
simulated remotely-piloted aircraft. The NASA MATB-II con-
sists of four composite tasks: tracking, system management,
resource management, and communication monitoring. These
composite tasks are composed of multiple atomic tasks and
activity components; however, this manuscript only focuses
on detecting the composite tasks’ visual component.

A. Experimental Design

The original NASA MATB-II required participants to re-
main stationary, but real-life HRT scenarios require movement
throughout the environment. The NASA MATB-II was modi-
fied to physically separate the composite tasks; thus, requiring
participants to walk between the tasks, as depicted in Figure 1.
Each NASA MATB-II tasks’ dedicated computer monitor was
stationed such that the participants were unable to visually see
more than two composite tasks simultaneously, ensuring that
participants walked around to complete the tasks.

Fig. 1: Physical layout of the modified NASA MATB-II.
NOTE: PA and PB are the points between which participants
walked back and forth in order to complete the tasks.

The tracking composite task (Figure 2a) required partic-
ipants to keep the circle with a blue dot in the middle of
the cross-hairs using a joystick. This composite task’s visual
component involves visually tracking the target.

The system monitoring composite task (Figure 2b) required
monitoring two colored lights and four gauges. The gauges’
indicator randomly moved up and down, typically remaining
in the middle. The green (L5) and the red light (L6) turned
on whenever the value was too high or low and required
resetting. The lights and gauges were reset by pressing the
corresponding number key on the top row of a keyboard. The
system monitoring task entails a visual inspection task.

The resource management composite task (Figure 2c) in-
cluded six fuel tanks (A-F) and eight fuel pumps (1-8). The
arrow by the fuel pump’s number indicated the direction fuel
was pumped. Participants were to maintain the fuel levels of
Tanks A and B by turning the fuel pumps on or off. Fuel Tanks
C and D had finite fuel levels, while Tanks E and F had an
infinite fuel supply. A pump turned red (i.e., stopped pumping)

(a) Tracking (b) System Monitoring

(c) Resource Management (d) Communications

Fig. 2: NASA MATB-II Tasks: (a) Tracking, (b) System Mon-
itoring, (c) Resource Management, and (d) Communications.

when it failed. This composite task also incorporates a visual
inspection task.

The communications composite task (Figure 2d) required
listening to air-traffic control requests for radio changes. The
communication request was similar to: “NASA 504, please
change your COM 1 radio to frequency 127.550.” Participants
were to change the specified radio to the specified frequency
by selecting the desired radio and using mouse clicks to
change the frequency. Communications not directed to the
participants’ aircraft (i.e., NASA 504) were to be ignored. The
communication composite task entails a visual locate task for
locating the radio channels.

The visual tasks had varying durations: the tracking task
is the longest, typically ranging from 20 to 60 seconds,
followed by the locate task ranging from 10 to 15 seconds.
The inspection task is the shortest, ranging from 4 to 10
seconds. Additionally, a Null visual task is added to the list to
indicate the absence of the other visual tasks. The Null task
accounts for the transitory interval during which no visual task
is performed (e.g., walking or transition between visual tasks).

A tutorial video described the NASA MATB-II tasks and
how to accomplish the tasks. The tutorial video was followed
by a 10-minute training session during which participants
gained familiarity with the task environment. The training
session cycled through the composite tasks, with each task
occurring continuously for a 1-minute period that was repeated
one additional time. The 52.5-minute trial switched the com-
posite tasks rapidly, and sometimes overlapped tasks in order
to emulate real-world scenarios. Forty-five participants (24
male, 20 female and 1 non-binary) completed the experiment.
The mean age and standard deviation (std. dev.) were 30.10
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and 9.91, respectively, with a range from 18 to 60.

B. Visual Task Recognition Algorithm

The visual task recognition algorithm employs a multimodal
approach, incorporating features extracted from the Pupil Core
eye tracker’s fixations, saccades, and the Xsens’ forehead
inertial metrics. The fixation and saccade gaze features capture
the eye movements’ spatio-temporal characteristics [2], while
the inertial features provide additional context associated with
the head movements [11], [12].

The inertial metrics, sampled at 40 Hz, are smoothed using a
moving average filter to reduce unwanted signal artifacts. The
eye tracker implements an internal dispersion-based fixation
detector [13] that converts the noisy raw eye gaze data
(sampled at 120 Hz) into a series of fixations and saccades.
A tw-second sliding window (with a 50% overlap) is applied
to the sensor stream for each metric.

Fig. 3: Fixation Cluster

Initially, the participants’ eye movements are analyzed by
clustering the fixations and saccades separately, using K-means
clustering, an N = 20 clusters resulted in the best classifier
performance. The fixation x, y coordinates gathered across all
participants are grouped into 20 clusters (Figure 3), as are the
saccades by grouping the saccadic distances (δx, δy) in the x⃗
and y⃗ axes (Figure 4). A total of 2,780 fixations and saccades
were used for clustering. The fixation and saccades’ range is
given by the 192 x 192 resolution pupil image, captured by the
eye tracker. Both clusters are used for constructing the fixation
and saccade histograms during feature extraction.

Three different types of feature sets are extracted per sliding
window: fixation, saccadic and inertial. The fixation features
are the fixation rate, fixation histogram, as well as the mean,
std. dev. and slope of the fixation duration and dispersion [1],
[2]. The fixation dispersion is the angle (degrees) measured

Fig. 4: Saccade Cluster

between a fixation’s centroid and the two farthest points
dispersed away from the centroid, while the fixation histogram
is given by the frequency of the 20 fixation clusters. The
saccadic features are the saccade length’s mean, std. dev. and
slope, as well as the saccadic histogram, which is given by
the frequency of the 20 saccadic clusters. Finally, the inertial
features consists of the accelerations’ and angular velocities’
mean, std. dev., and slope.

The extracted features are fed into a Random Forest (RF)
classifier with 100 decision trees, and a max depth of 500,
where the parameters are chosen based on classifier per-
formance. The RF classifier is an ensemble algorithm that
aggregates the decisions of multiple unique individual decision
trees, which reduces the overall variance and results in good
generalization [14]. The RF classifier tends to outperform most
other classification methods, without overfitting [14].

The window size has a significant effect on the number
of fixations and saccades available for feature extraction [2].
Smaller time windows allow for near real-time detection, but
have poor accuracy, while longer windows have access to more
information, resulting in better accuracy [1]–[3], [7], [8], [15];
thus, various window sizes tw = {5s, 10s, 15s, 30s, 60s} with
a 50% overlap are investigated.

Multiple tasks can occur within a given window, especially
with larger window sizes, but the task that occurs the most
frequently is considered to be the given window’s desired task.
Therefore, each window is labeled by the task that occurred
with highest frequency within the window’s duration.

C. Validation and Hypotheses

Two different datasets were used to train the algorithm
separately in order to analyze generalizability, resulting in two
trained algorithm variants: the ten minute training session’s
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TABLE I: Visual task recognition algorithms’ accuracy % [mean (std. dev)] aggregated across participants by dataset and
window size. NOTE: The highest accuracies across the algorithms for each dataset and window size are presented in Bold,
while the overall highest accuracy for each dataset is highlighted in Italics.

Dataset Algorithm Window size
5 10 15 30 60

TRN
RF 66.98 (9.14) 68.88 (10.88) 68.11 (14.0) 71.89 (15.87) 70.71 (23.01)
ANN 45.54 (10.90) 47.28 (8.12) 45.28 (8.68) 48.32 (8.71) 38.24 (20.42)
SVM 51.20 (9.99) 54.56 (10.67) 53.71 (13.69) 54.19 (16.42) 47.30 (19.44)

TRL
RF 54.64 (9.11) 56.11 (9.08) 57.16 (9.40) 57.63 (9.78) 61.62 (10.91)
ANN 30.86 (5.81) 34.29 (8.19) 32.96 (4.24) 33.87 (5.50) 38.15 (7.19)
SVM 40.86 (6.54) 43.08 (7.66) 43.31 (8.10) 45.50 (8.55) 49.38 (12.36)

data (TRN), and the 52.5-minute trial session’s data (TRL).
The algorithm variants were validated using the leave-one-
subject-out cross-validation scheme, where the average accu-
racy is reported by training the algorithm repeatedly on all,
but one participant’s data and validating using the left-out par-
ticipant’s data [16]. Both datasets were balanced by randomly
downsampling overrepresented visual task instances in order to
ensure that the algorithm’s accuracy is not artificially inflated.

The RF algorithm was trained to predict one of the four
visual tasks: i) Tracking, ii) Inspect, iii) Locate and iv) Null
for each window. The evaluated window sizes inform the
impact of the window size on the algorithm’s performance.
The algorithm’s performance was validated against two other
classifiers: i) Artificial neural network (ANN) with two rec-
tified linear activated hidden layers, with 16 neurons and a
50% dropout at each layer, and ii) a SVM with a radial basis
function kernel. Both ANN and SVM classifiers consumed the
same features. SVM is chosen for it popularity among visual
task recognition algorithms [1], [2], [7], while ANN is chosen
for its ability to better learn the non-linearities in the data [17].

Hypothesis H1 predicted that the TRN variant’s accuracy
will be significantly higher than the TRL variant’s. Hypothesis
H2 predicted that the algorithms’ accuracy will increase, as
the window size increases, before reaching a point of diminish-
ing returns. Hypothesis H3 predicted that the algorithm will
detect tasks with ≥ 80% classification accuracy for at least
one of the analyzed window sizes.

IV. RESULTS

The Friedman analysis of variance by ranks test is used to
determine statistical significance in accuracies between results.
If significant differences exist, the Wilcoxon signed-rank test
was used to identify the specific significant differences. The
non-parametric statistical tests ensured that the outcomes were
unaffected by the accuracy distribution across participants.

The RF algorithm had the best performance across all
window sizes for both data sets, as indicated in Table I, while
the ANN had the worst performance across all window sizes
for both the datasets. The Wilcoxon signed-rank test between
the algorithms’ accuracies across window sizes indicated that
the RF’s accuracy was significantly higher (p < 0.01) than
both the ANN’s and SVM’s accuracies across all window sizes
and both datasets.

The RF algorithm’s accuracy on the TRN dataset increased
gradually with window size, peaking at the 30s window size

(71.89%). The Friedman’s test revealed that the accuracies
were significantly different between window sizes within the
RF (χ2(5, 44) = 46.89, p < 0.01). The Wilcoxon signed-
rank test indicated that the RF algorithm’s 30s window size’s
accuracy was significantly higher than the 5s (p < 0.01),
10s (p < 0.05) and 15s (p < 0.05) windows, while the 5s
window size’s accuracy was significantly lower than the 10s
(p < 0.05). Other accuracy differences were not significant.

The RF algorithm’s accuracy on the TRL dataset increased
gradually with window size, achieving the highest accuracy at
the 60s window size (61.62%). The Friedman’s test revealed
that the accuracies were significantly different between win-
dow sizes within the RF (χ2(5, 44) = 29.0, p < 0.01). The
Wilcoxon’s test indicated that the RF algorithm’s 5s window
size’s accuracy was significantly lower (p < 0.01) than all
other window sizes, while the algorithm’s 10s window size’s
accuracy was significantly lower (p < 0.01) than the 15s, 30s
and 60s window sizes. The test also revealed that the 60s win-
dow size’s accuracy was significantly higher (p < 0.01) than
all other window sizes, while accuracy differences between
the other window sizes were not significant.

TABLE II: Visual task recognition accuracy [mean % (std.
dev.)] by the incorporated metrics for the RF algorithm with
the 60s window for the TRL dataset aggregated across partic-
ipants. The highest accuracy is highlighted in Bold.

Metrics Accuracy
Fixation 39.82 (12.1)
Saccades 48.49 (14.14)
Inertial 53.80 (10.35)
Fixation + Saccades 48.49 (13.51)
Fixation + Inertial 56.14 (10.33)
Saccades + Inertial 60.18 (11.38)
Fixation + Saccades + Inertial 61.62 (10.91)

The incorporated metrics can impact the RF algorithm’s
performance. Given that the RF algorithm outperformed the
SVM and ANN options, the analysis by incorporated metric
was performed only for the RF algorithm. Using the TRL
dataset with the 60s window size, the RF algorithm was trained
by combining the metrics in several combinations. A total of
seven combinations were evaluated by incorporating the met-
rics individually, and by two and three metrics simultaneously
(as shown in Table II).

The analysis by individual metric found the highest accuracy
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(53.80%) was attained by the head inertial metrics, while
the fixation metrics had the lowest accuracy (39.82%). The
Wilcoxon signed-rank test revealed that the head inertial
metrics’ accuracy was significantly higher (p < 0.01) than
the other two metrics, and the saccade metrics’ accuracy was
significantly higher (p < 0.01) than the fixation metrics.

The highest accuracy (60.18%) when incorporating two
metrics simultaneously was achieved by combining the sac-
cades and head inertial metrics, while the lowest accuracy
(48.49%) was recorded when the fixation and saccades were
combined. The Wilcoxon signed-rank test revealed that the
saccades and head inertial combination’s accuracy was sig-
nificantly higher (p < 0.01), than the remaining two com-
binations. The test also revealed that the saccade and head
inertial combination’s accuracy and the accuracy of all three
metrics combined did not differ significantly. A similar trend
was observed for the metric combinations across the window
sizes (i.e., 5s, 10s, 15s, 30s) for the TRL variant.

V. DISCUSSION

Hypothesis H1 predicted that the RF algorithm’s TRN
variant’s accuracy will be significantly higher than the TRL
variant, which was fully supported across all window sizes.
The algorithm’s accuracy on the TRN dataset was higher (up
to 14%) than the TRL datset, even though the TRL dataset
was significantly larger. This difference can be attributed
to each training session’s tasks occurring over a prolonged
time period, allowing the features to be representative of the
visual characteristics of each individual task. The multi-tasking
nature of the trial session does not result in such task isolation,
which reduces the task accuracy.

Hypothesis H2 predicted that the RF algorithm’s accuracy
will increase, as the window size increases, before reaching
a point of diminishing returns. The hypothesis was fully
supported, as the TRN variant’s accuracy increased until
30s window size before decreasing at 60s, while the TRL’s
accuracy continued to increase until the 60s window size. The
RF algorithm with the 60s window size had the best overall
performance for the TRL dataset; thus, if a single window size
variant is to be selected, it is the recommended algorithm and
window size using the current metrics.

Hypothesis H3 predicted that the RF’s algorithm will detect
tasks with ≥ 80% classification accuracy for at least one of the
window sizes. This hypothesis was not supported, as the RF
algorithm’s maximum accuracy was only ∼60% for the TRL
dataset, regardless of the window size. The algorithm’s poor
performance can be attributed to two factors. The participants’
eye and head movement patterns may not have been distinct
enough between tasks in the TRL dataset, indicating that the
multi-tasking nature may have had an negative impact on de-
tection accuracy. Additionally, labeling the visual tasks is non-
trivial and highly uncertain, as it is difficult to determine when
exactly the participant’s visual processes began prior to task
execution. This labeling uncertainty may have also exacerbated
the poor performance, particularly the TRL dataset.

It is important to determine the incorporated metrics’ abil-
ity to detect the tasks reliably. The selected metrics were
inadequate to capture the participants’ visual behavior in a
multi-tasking environment. The per metric analysis indicated
that Xsens’ head motion inertial data was the most useful,
followed by the saccade and fixation metrics. The visual task
detection analysis determined that the incorporated metrics are
less responsive to reliably detect tasks in a dynamic, multi-
tasking environment (i.e., switching tasks frequently). Addi-
tional metrics (e.g., microsaccades and scanpath) extracted
from the eye tracker can be incorporated and may improve
the algorithm’s performance.

Identifying the appropriate window size for each algorithm
informs how the metrics must be segmented, such that the
features extracted are representative of the tasks being de-
tected. The analysis indicated that the incorporated metrics
generally require larger window sizes (> 30s) to detect visual
tasks more accurately. The TRN session’s tasks were labeled
reliably, as the participants performed the tasks roughly for a
minute before task switching. Given this labeling certainty, the
algorithm achieved its highest accuracy for the 30s window
size, suggesting that thirty seconds of data is required to
assimilate the context needed to detect the tasks reliably. The
TRL session’s data is highly uncertain due to the rapid task
switching and accompanied labeling difficulty; therefore, it is
harder for the algorithm to assimilate the required context at
lower window sizes. The 60s window size is recommended,
because it is large enough to provide the algorithm with the
required context (i.e., equivalent to that of a thirty-second less
uncertain data), amidst the uncertainty. This larger window
size is believed to enable the algorithm to learn a better rela-
tionship between the tasks and metrics, given the uncertainty.
Additional analysis with tw ranging between 30s and 60s is
required to determine the peak performing window size for
the TRN and TRL datasets.

Visual tasks will have different durations. A short task
(e.g., inspection) may require a smaller window, so that the
task is not overshadowed (e.g., confused) by all the unrelated
data; therefore, it may be necessary for the task recognition
algorithm to use an adaptive sliding window method [18], [19].
An adaptive sliding window will permit for expanding and
contracting the window size, based on the task, may lead to
more accurate detection.

VI. CONCLUSION

A robot’s ability to detect tasks that involve non-physical
movements is crucial for HRTs in which humans perform
wide range of tasks. The primary contribution is the developed
visual task recognition algorithm that incorporated metrics ac-
quired from wearable sensors to detect visual tasks performed
by HRTs in a non-sedentary environment. Combining the
spatio-temporal eye gaze metrics with the head inertial metrics
improved the algorithm’s performance by providing additional
context. While the developed visual task recognition algorithm
did not meet the expected standard (< 80% accuracy), it
is a viable candidate for incorporation into an HRT system
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that entails multiple activity components. Future work will
improve the algorithm’s performance by incorporating addi-
tional metrics, such as microsaccades and scanpath. Multiple
instance learning algorithms will be investigated to address
the labeling ambiguity and gain accuracy improvements. Ad-
ditionally, adaptive sliding window methods to detect visual
tasks of varying lengths will be investigated. The task detection
algorithm will also be evaluated in an uncertain, dynamic peer-
based task environment in order to assess its viability across
human-robot teaming domains.
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