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Abstract—Human-robot teams operate in uncertain environ-
ments to accomplish a wide range of tasks. A dynamic under-
standing of the human’s workload can enable fluid interactions
between team members. Workload can be decomposed into
workload components (e.g., cognitive, visual, speech, auditory,
gross motor, fine motor, and tactile). A system that seeks to adapt
interactions for a human-robot team needs to understand the
distribution of workload across the different components. Prior
work treated the gross motor, fine motor, and tactile components
as a joint physical workload. The presented algorithm estimates
gross motor, fine motor, and tactile workload for a human-robot
team operating in a non-sedentary supervisory environment;
however, noise and task uncertainty lead to mixed results. The
metrics for this algorithm were collected using a diverse set of
wearable sensors, including heart rate monitors, motion trackers,
and surface electromyography sensors.

Index Terms—Physical Workload, Human-Machine Teaming,
Wearable Computing

I. INTRODUCTION

Deploying human-robot teams in uncertain environments
requires the robot to dynamically understand the human’s
internal state. This dynamic understanding must account for
real-world complexities in order to enable fluid interactions
between the robot and its human teammate. Workload is a
measure that, in general, represents how hard a person is
working, and can be decomposed into workload components
(e.g., cognitive, visual, speech, auditory, gross motor, fine
motor, and tactile). Incorporating accurate workload models
enhances the robot’s understanding of its human teammate,
allowing the robot to manage the human’s workload level,
either through intelligent modulation of task performance, or
how the robot interacts with its teammate.

Any system that seeks to adapt how it interacts with a hu-
man needs to be capable of distinguishing the specific demands
placed upon the human by understanding the distribution of
workload across the different components. Prior work treated
the gross motor, fine motor, and tactile components as a
single component, called physical workload [1]. This joint
consideration only partially informs a workload estimation
method, as it aggregates away key contextual information. A
high physical workload may result from a high gross motor
demand (e.g., lifting heavy boxes), a high fine motor demand
(e.g., controlling a UAV with a joystick), or high tactile
demand (e.g., commanding a fleet of robots using a tablet).
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Understanding the specific context of physical workload is
crucial for enabling more dynamic human-robot teaming.

Future human-robot teams will be deployed in unstructured,
dynamic domains (e.g., wildland fire response) unable to
support environmentally embedded sensors (e.g., cameras in
built structures), or complex sensor systems (e.g., EEG) that
require a mostly stationary human user in a structured environ-
ment (e.g, air traffic controller). Thus, wearable physiological
sensors (e.g., inertial measurement unit (IMU), electromyog-
raphy (EMGQG)) are a core requirement for workload estimation
methods, as they allow the human and the robot to act
independently, enabling more flexible teaming. A modified
NASA Multi-Attribute Task Battery-II (MATB-II) was used
to balance data collection in a controlled environment with
realistic, non-sedentary supervisory human-robot teaming.

This manuscript develops estimation models for the gross
motor, fine motor, and tactile workload components. These
models were trained using data from a human supervising a
single remotely-located aerial robot as part of an evaluation
focused on workload and task recognition.

II. BACKGROUND

Humans have a limited capacity for processing information,
making decisions, and dealing with physical stress. This
capacity can be analyzed by viewing how humans work from
a resource management perspective [2]. Workload is the ratio
between the resources an individual has available to dedicate to
a task and the total resources an individual has available for
performing all tasks [3]. This ratio varies day-to-day and is
dependent upon a range of external factors, such as expertise,
emotional stress, and fatigue [4].

Workload can be decomposed into components: cognitive,
visual, speech, auditory, and physical. Physical workload can
be further subdivided into gross motor, fine motor, and tactile
workload. Gross motor workload is anything that includes
movement of large body segments (e.g, walking, lifting boxes),
while fine motor workload involves more controlled move-
ments, such as the arms and the hands. Tactile workload refers
to tasks that require physical touch, such as typing, clicking
buttons on a computer mouse, or feeling surfaces.

High and low workload values have different implications
on a human’s internal state. A high workload value, overload,
occurs when a task requires a large amount of resources, but
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an individual only has a small amount of resources available.
A low workload value, underload, occurs when a task requires
relatively few resources and the individual has a large amount
of available resources. The thresholds for overload and under-
load vary between people and tasks. Normal load is defined
as the region between these two thresholds. The underload
condition has been difficult to detect but presents a problem
of equal magnitude to overload. People tend to become unen-
gaged in their work during periods of underload, which leads
to reduced alertness and lowered situational awareness [4].

Prior work either focused on estimating overall workload for
physical tasks [5], or physical workload as a single component
[1] [6]. Manjarres et al. segmented five heart-related metrics
(i.e., absolute cardiac cost, relative cardiac cost, max heart
rate, mean heart rate, heart-rate acceleration) into intervals
that are summed to create a Frimat’s score [6], which was
used to construct intervals representing physical workload and
task difficulty. A Random Forest model classified these heart-
related metrics into physical workload intervals. Heard et al.
developed neural network-based models that used wearable
sensors to estimate cognitive, auditory, speech, physical, and
overall workload [7]. Workload values for the experimental
tasks were derived from the human performance modeling tool
IMPRINT PRO [8]. The physical workload relied solely on
physiological metrics (e.g., postural load, respiration rate, heart
rate). These views of physical workload do not investigate the
specific contributions of the gross motor, fine motor, and tactile
components to overall workload.

PHYSIOPRINT is a workload assessment tool that esti-
mates all seven workload components, including gross motor,
fine motor, and tactile [9]. This tool uses electroencephalo-
gram (EEG) and electrocardiogram (ECG) metrics to perform
atomic task recognition, where the atomic tasks correspond
to known tasks within IMPRINT PRO with an assigned static
workload value. This approach takes a more granular approach
to physical workload estimation, but the reliance on these static
values overlooks the impact of individual differences.

There has been increasing interest in the use of wearable
sensors for performing physical task recognition [10]. Both
traditional machine learning [11] and deep learning [12] have
proven effective at performing gross motor task recognition.
Similarly, deep learning methods exist for recognizing fine
motor tasks [13] and tactile tasks [14]. The problems of
physical task recognition and physical workload estimation
are distinct but share core commonalities. The success of these
methods suggests that using wearable sensors for gross motor,
fine motor, and tactile workload estimation holds promise.

III. METHODS

The research questions focus on if the workload models
can (1) reliably identify an individual’s workload level (i.e.,
UL, NL, OL), and (2) produce a precise workload value.
Identifying the relative workload level can help an adaptive
system understand the nature of a human’s needs, whether
they need to be more engaged or require assistance. Precise
workload values add additional context, by quantifying the

proximity to the OL or UL threshold. An evaluation designed
to estimate workload and detect tasks (part of another effort)
used the NASA MATB-II [15]. The evaluation manipulated
tasks, task density (i.e., workload), and task density ordering as
independent variables. The task density variable (i.e., workload
levels) manipulated the number of tasks initiated during a
specific time period. The workload was elicited by increasing
and decreasing the NASA MATB-II tasks’ frequency Under-
load (UL), Normal load (NL), and Overload (OL). The task
density ordering (i.e., workload ordering) ensured that each
task density transition (e.g., UL-NL, OL-UL) occurred exactly
once. Participants completed a single 52.5-minute trial using
an adapted NASA MATB-II version, where the trial consisted
of seven consecutive 7.5-minute task density conditions. Three
task density orderings:

e Ol: UL-NL-OL-UL-OL-NL-UL

e 02: NL-OL-UL-OL-NL-UL-NL

e 03: OL-UL-OL-NL-UL-NL-OL
In-situ workload ratings of each workload component were
collected every 7.5 minutes, subjectively on a scale of 1 to 5.

A. Supervisory Task Environment

The supervisory task environment consisted of a modified
version of the NASA MATB-II [15] and required a human
to supervise a simulated aerial robot. The NASA MATB-II
consists of four tasks: tracking, system management, resource
management, and communication. The communication task
was split into two separate tasks, communication, and commu-
nication response, in order to model the communication itself
and any verbal response.

Participants were not required to move when using the origi-
nal NASA MATB-II system, but real-life human-robot teaming
scenarios can require movement throughout the environment.
The NASA MATB-II was modified to physically separate
each NASA MATB-II task; thus, requiring participants to
walk between two sets of tasks, called the walking task. This
physical layout is depicted in Figure 1. The modified NASA
MATB-II provides control over the task environment. Each
NASA MATB-II task had a separate dedicated monitor, each
stationed such that the participant was unable to visually see
more than two tasks simultaneously. This visual hindrance
ensured that participants walked around the environment to
complete the overall mission. The required equipment (e.g.,
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Fig. 1. The Modified NASA MATB-II physical layout. P4 and Pp represent
the area participants walked between. SYSMAN: System Monitor station.
RMAN: Resource Management station. COMM: Communications station.
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Fig. 2. The NASA MATB-II Tasks.

joystick or keyboard) to complete each task was placed in
front of the respective computer monitor.

The tracking task, depicted in Figure 2a, required par-
ticipants to keep the circle with a blue dot in the middle
of the cross-hairs using a joystick. The underload condition
consisted of a single 45-second session of manual tracking,
otherwise it was automated. The overload condition required
two 12-second manual tracking sessions every minute, while
the normal load required one 20-second session every minute.

The system monitoring task, shown in Figure 2b, required
monitoring two colored lights and four gauges. If the green
(LS) or the red light (L6) turned on, the value was out of
range and required resetting. The four gauges had a randomly
moving up and down indicator that typically remained in the
middle. Participants reset a gauge if it was out of range (i.e.,
too high or too low). These items were reset by pressing the
corresponding number key on the keyboard’s top row. The
underload condition had only one out-of-range instance in the
entire 7.5-minute session, overload had fifteen instances per
minute, and normal load had five instances per minute.

The resource management task included six fuel tanks (A-
F) and eight fuel pumps (1-8), shown in Figure 2c. The arrow
by the fuel pump’s number indicated the fuel flow direction.
Participants were to maintain the fuel levels of Tanks A and
B by turning the fuel pumps on or off. Fuel Tanks C and D
had finite fuel levels, while Tanks E and F had an infinite fuel
supply. A pump turned red when it was unable to pump fuel.
The underload condition had 2 minutes of manual management
with zero pumps failing, otherwise it was automated. The
entire overload condition required manual management, with
two or more pumps failing, while only the last 3.5 minutes of
the normal load condition required manual management, with
at most two pumps failing every minute.

The communications task required listening to air-traffic
control requests for radio changes. The communication request
was similar to this: “NASA 504, please change your COM 1
radio to frequency 127.550.” The original MATB communica-
tions task required no speech, but a required verbal response
was added. An example response is: “This is NASA 504 tuning
my COM 1 radio to frequency 127.550.” Participants changed
the specified radio to the specified frequency by selecting the
desired radio and using arrows to change the radio’s frequency,
as depicted in Figure 2d. Communications not directed to the
participant’s aircraft, indicated by the call sign, were to be

ignored. The underload condition contained a single com-
munication request with one communication response task,
overload contained three communication requests with at least
two communication response tasks every minute, while normal
load contained up to two auditory communication requests,
with only one communication response task per minute.

Finally, participants were required to walk around the tables
to the other stations (e.g., from P4 to Pp in Figure 1)
whenever a ping sound occurred. Participants were free to
move between the tasks at any time, but the ping sound
enforced a mandatory transition to the other workstations.
The underload condition contained two walk requests, the
overload condition incorporated seven requests per minute,
and normal load had two requests per minute. Task timings
and occurrences were chosen, such that the correct workload
condition, or task density, was elicited. The IMPRINT Pro
tool was used to model the tasks for each workload level and
ordering prior to conducting the evaluation. The IMPRINT Pro
tool provided anchors to choose the workload difficulty value
[8]. The anchor values are not normalized across components;
thus, the association between a task and the workload value
varies significantly across the components.

A tutorial video described the NASA MATB-II tasks and
how to accomplish the tasks. The tutorial video was followed
by a 10-minute training session, during which participants
gained familiarity with the task environment The training
session cycled through the tasks, with each task occurring
continuously for a I-minute period, repeating the cycle one
additional time. The 52.5-minute trial commenced after the
training. The tasks switched rapidly and sometimes overlapped
to emulate real-world scenarios. Forty-three participants (26
male, 17 female, and 2 non-binary) completed the experiment,
with ages ranging from 18 to 60.

B. Feature Extraction

Objective physiological metrics were collected using the
BioPac Bioharness™ BT [17], the Xsens MTw Awinda [16],
and two Myo armbands [18]. The Bioharness™ collects
various physiological metrics, including heart rate, respiration
rate, and postural magnitude, at a 1 Hz sampling frequency.
The Xsens MTw Awinda measures the participant’s body pose
using seventeen IMUs located on the body (see Figure 3) at
40 Hz. The two Myo armbands each measure an 8-channel
surface EMG and a forearm inertial metrics at 100 Hz. Each

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 21,2022 at 20:06:20 UTC from IEEE Xplore. Restrictions apply.



@—=| Motion Tracker |

[GmssMomr] [Fine-grained] [ Tactile ]

Fig. 3. Xsens IMU position on the body, with highlights for the sensors, used
to estimate gross motor, fine motor, and tactile workload [16].

physical workload subcomponent relies on a different set of
sensors, as different metrics correlate with each component.
The gross motor workload model combines the Bioharness’
heart rate, respiration rate, and postural magnitude with the
Xsens’ lower body inertial metrics. Four time-based features
are derived from the Bioharness™ metric: mean, standard
deviation (stdev.), slope, and gradient. Prior work established
that these features are effective when estimating physical
workload [7] and that they correlate with changes in gross
motor workload [4]. The primary gross motor task in this
experiment was walking. Thus, seven IMUs on the lower body
(i.e., pelvis, thighs, calves, and ankles, as shown in Figure
3) produce positional and orientation measurements in three
dimensions, which were used to calculate the magnitude of the
acceleration and angular velocity vectors. Additionally, seven
time-based features were derived using these vectors: mean,
stdev., skew, kurtosis, minimum, maximum, and median.
The fine motor workload model combines the inertial data
from the Xsens motion trackers on the wrists and hands, see
Figure 3, with the forearm inertial and 8-channel SEMG data
obtained from the two Myos. The tactile workload model also
combines the inertial data from the Xsens with the EMG
data from the Myo, but only incorporates the left and right-
hand inertial metrics and the 8-channel surface EMG metrics
for both forearms. Both models’ metrics were processed in a
similar manner to the gross motor model metrics. The inertial
data was used to calculate the magnitude of the acceleration
and angular velocity vectors in three dimensions, and the seven
time-based features were extracted for inertial and EMG data.
Prior work established that the Xsens’ inertial data is not
prone to either significant time delay (i.e., less than 1 second),
or significant amounts of drift [16] [19], which was primarily
attributed to its magnetometer-based correction and a Kalman
Filter. The Myo armbands use similar techniques, but no
studies have verified they are not prone to time delays or drift.
All metrics were processed using a sliding window of 10
seconds. Data within the window was standardized by sub-
tracting the mean (1) and dividing by the standard deviation

(0), as described in Equation 1.

)

C. Model Development and Validation

Neural networks have been effective at estimating cognitive,
auditory, and physical workload [7]. However, recently tree-
based models generally outperform on tabular datasets [20].
Thus, both a fully-connected neural network and a gradient
boosting regression tree (GB Tree) were evaluated for estimat-
ing the physical workload subcomponents. The neural network
was implemented using Pytorch and had 5-layer hidden layers
with 256 nodes each. The GB Tree was implemented using
Scikit-learn’s Histogram-Based Gradient Boosting algorithm
[21]. Early stopping was employed in both models to prevent
overfitting. All machine learning models were validated using
leave-one-subject-out (LOSO) cross validation, where the root
mean squared error (RMSE) is reported by training the model
on all, but one participant’s data and validating using the left-
out participant’s data.

IV. RESULTS

The RMSEs for the LOSO cross validation by model type
are provided in Table 1. Prior work suggested that a RMSE <
5% of the maximum workload value is sufficient to identify
workload levels and produce precise workload values [4]. The
gross motor target RMSE (i.e, 5% of the maximum) is 0.15,
as the maximum gross motor workload value is 3. The gross
motor models came the closest to the < 5% goal, with a
RMSE for both models of 0.19 (i.e., 6% of the maximum). The
target for fine motor workload is 0.92, as it has a maximum
value of 18.4. The fine motor GB Tree and the Neural Net
resulted in a similar RMSE, approximately 10% of the fine
motor workload maximum. Tactile has a maximum of 12.0;
therefore, the target RMSE is 0.60. The GB Tree tactile model
achieved a RMSE of 1.96, while the Neural Net had a RMSE
equal to 2.08, both of which are approximately 15% of the
maximum tactile workload value. Given the GB Tree’s lower
RMSE in all instances, it was used for the remaining analysis.

The GB Tree models were used to estimate each partic-
ipant’s workload for the entire experiment. Mean estimated
workload was calculated every 7.5 minutes (i.e., workload
interval) at 1 Hz, for each participant, resulting in an overall
mean value for UL, NL, and OL workload. The medians of
the resulting condition means, for all participants, and each
workload component are shown in Figure 4. The figure shows
that the models are unable to distinguish the relative workload

TABLE I
WORKLOAD RMSE
GB Tree
Component | Neural Net Overall o1 03 03
Gross Motor 0.199 0.194 0.185 | 0.191 | 0.207
Fine Motor 2.062 1.942 1.857 | 2.059 | 1916
Tactile 2.084 1.962 1.885 | 2.060 | 1.936
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Fig. 4. Quantile plots of (a) gross motor, (b) fine motor, and (c) tactile workload by ordering for mean (green) and IMPRINT PRO (blue) estimated workloads,

with the additional of outliers (white circles) and the modes (red x’s).

TABLE I
IN-SITUATION SUBJECTIVE WORKLOAD VALUES ACROSS WORKLOAD
ORDERINGS AND CONDITIONS.

Workload
Ordering | Component UL NL OL

Gross Motor | 1.76 (0.87) | 3.03 (1.09) 3.6 (1.13)

o1 Fine Motor 2.07 (0.9) 2.76 (0.91) 3.3 (0.84)
Tactile 2.26 (1.08) | 2.79 (1.08) | 3.3 (1.26)

Gross Motor | 2.3 (1.05) 2.0 (1.04) 1.87 (0.81)

02 Fine Motor 2.42 (1.06) | 2.36 (1.25) | 2.22 (1.17)
Tactile 2.67 (1.11) | 2.40 (1.08) | 2.22 (1.17)

Gross Motor | 2.9 (1.07) 2.04 (0.66) | 2.35 (1.16)

03 Fine Motor 3.1 (1.02) 2.08 (0.84) 2.42 (1.27)
Tactile 2.97 (1.11) | 2.35 (1.09) 2.46 (1.3)

level for any of the three components, even for gross motor
that had a RMSE close to the 5% target.

The O1 estimates follow the appropriate trend for all
components, where UL < NL < OL. However, the difference
between median values across workload levels is small. The
other task density orders do not exhibit this trend. Additionally,
the RMSE values were lower for the Ol participants than
02 and O3. Interestingly, this pattern matches the in-situ
ratings, provided in Table II. Ol clearly shows increasing
ratings across the conditions, while the OL condition had the
lowest value for O2. Oddly, UL had the highest ratings for
both O2 and O3. However, the mean subjective workload for
UL, NL, and OL, for both O2 and O3, are all within one
standard deviation of each other. Considerable noise exists in
the workload estimates. There are numerous outliers across
the workload components, orderings, and conditions as shown
in Figure 4. Further, the workload interval estimates’ mode is
equal to the minimum estimate in most instances.

V. DISCUSSION

The gross motor model achieved a RMSE of 6% of the
maximum workload, but neither the tactile nor fine motor
models came close to the <5% goal. None of the workload

models were able to reliably identify the workload level. The
low RMSE values suggest that the machine learning models
found a small relationship between the participants’ workload
and physiological metrics, but it was not strong enough to
identify workload levels in arbitrary situations. The poor
performance is caused by (1) noise and (2) task uncertainty.

The noise is clearly indicated by the number of outliers
in the workload estimates. The mode equalling the minimum
suggests noise comes from periods with low amounts of phys-
ical work, regardless of the physical workload subcomponent.
Different tasks require varying amounts of physical movement.
An over-representation of tasks that do not contain a lot of
physical movement can introduce bias into the training pro-
cess. Balancing the training dataset to account for task types
and component-specific workload levels will help to improve
performance. Further, the experimental design only modulates
overall workload. There may be times when physical workload
is low, even though overall workload is high.

High task uncertainty will exist but complicates machine
learning model development. Verifying participants execute
tasks in the modeled order, at the expected time, is non-trivial
and highly uncertain. Task uncertainty can cause misalignment
between the objective workload estimation, and the IMPRINT
Pro workload model, leading to poor performance during the
training process. Further, superfluous activity by the partici-
pant may have introduced additional errors. Participants were
not prevented from checking the stations during the UL and
NL conditions. Further, O2 and O3 introduce the overload
condition earlier than O1. Participants transitioning from OL to
UL, or NL may anticipate the high task volume will continue,
causing them to engage in additional physical movement. This
unnecessary work exacerbates the misalignment between the
estimates and the IMPRINT PRO model.

One method of reducing task uncertainty is to manually la-
bel data via video coding, and only include data for active task
engagement. Coding is time-consuming, not generalizable, and
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will not work in real-time. Some level of uncertainty is nec-
essary, otherwise the machine learning model will be unable
to handle real-world situations. Another approach incorporates
a metric for task composition. Understanding each workload
component’s weighted contribution to a task facilitates the
machine learning model weighting the physiological signals
accordingly. Thus, task composition mitigates the influence of
noise from the physiological metrics. Task composition can
be derived from an external model (e.g., IMPRINT PRO) or a
task recognition algorithm, but external models do not account
for new tasks, and task recognition is an open problem.

Both the in-situ workload ratings and the objective workload
models poorly reflected the relative workload levels in O2 and
03. The two differences between the orderings are (1) the
initial workload level, and (2) the workload level transitions.
It is unclear whether these factors altered the participants’
perceived workload, or impacted their ability to accurately re-
port workload. O1 monotonically increases workload over the
first three intervals, while O2 and O3 participants encountered
OL prior to UL. These factors may have altered participants’
expectations of future workload and the intended meaning of
the participants’ in-situ workload ratings. However, it is also
possible that the in-situ workload ratings’ variance is too great
to make definitive conclusions. These results warrant further
investigation to understand how the timing of the workload
levels impacts participants’ perceived workload.

Participant handedness, which was not recorded, may also
impact the results. It is likely the majority of participants are
right-handed, and the resulting models may be biased as a
result. Further, the left-handed participants’ metrics will add
noise during training. This uninformed handedness mixing
likely introduced additional errors.

Many human-robot teaming domains required a period of
training, to allow the human to become familiar with the
robot. Future work can utilize such a training period to
gather demographic information (e.g., handedness), contextual
information, expected tasks composition, and other individual
differences that will provide more reliable training data.

VI. CONCLUSION

Models to estimate gross motor, fine motor, and tactile
workload were developed using physiological metrics ex-
tracted from wearable sensors. These models achieved a low
RMSE, but are not reliable enough to detect the desired work-
load component’s levels. While these metrics hold promise,
further investigation is needed. High task uncertainty and su-
perfluous participant movement appear to have added signifi-
cant noise to the metrics, which impacted the machine learning
process. Future work will investigate methods for mitigating
noise in the physiological data and incorporating contextual
information, such as handedness and task composition, into
machine learning models to improve performance.
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