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Abstract—We investigate a method for cooperative learning
called weighted average model fusion that enables neural net-
works to learn from the experiences of other networks, as well as
from their own experiences. Modern machine learning methods
have focused predominantly on learning from direct training,
but many situations exist where the data cannot be aggregated,
rendering direct learning impossible. However, we show that the
simple approach of averaging weights with peer neural networks
at periodic intervals enables neural networks to learn from
second hand experiences. We analyze the effects that several
meta-parameters have on model fusion to provide deeper insights
into how they affect cooperative learning in a variety of scenarios.

I. INTRODUCTION

The “ultra-social” nature of humans has been recognized

as a primary factor in their general cognitive development

[12]. However, most machine learning methods still focus on

learning exclusively from direct observations. Can machines

also learn to benefit from the experiences of others, as humans

do so effectively? In this paper, we show that the very simple

approach of averaging weights with peer neural networks

at periodic intervals is sufficient to facilitate the effective

transfer of learned knowledge. Our neural networks are able

to demonstrate capabilities they were never directly trained to

have, and converge to approximately the same accuracy as a

single model that was trained with all of the data.

Iterative weight training methods, such as stochastic gradi-

ent descent [3], AdaGrad [8], RMSprop [24], and Adam [15],

have been highly effective at refining models to fit training

data. These methods all iteratively refine the weights of a

model until it fits to some training data. Our approach is based

the idea that by periodically combining the weights of two

peer networks during this iterative training process, learned

knowledge will eventually diffuse throughout a network of

peer neural networks.

One application where cooperative learning can make a

large impact is mining data from hospitals. There are over

five thousand hospitals in the United States alone, and many

more throughout the world. Each one has a large storage

of patient data. In aggregate, this data presumably contains

valuable knowledge that could be mined to discover new

patterns for diagnoses or new treatments [1], [19], [14].

However, due to the personal and sensitive nature of this

data, hospitals are neither willing nor often even permitted

to share this data. Another example where the aggregation

of data is not practical is smart grid technology. So many

devices can now collect so much data so rapidly that it is not

even feasible to transport it all to a central location. Under

such conditions, our method proposes that learning can be

peformed locally, without ever even aggregating the data. This

approach is compelling because learned models can be orders

of magnitude smaller than the raw training data, and we show

that individual models can effectively learn capabilities for

which they were never directly trained.

II. RELATED WORKS

Ensemble learning may be the most well-established ap-

proach for combining models together. Ensembles of neural

networks started with Hansen and Salamon’s work [11]. Since

that time, there have been numerous studies done that build

on their work, such as Multiple Networks Fusion using Fuzzy

Logic [6], Ensembling neural networks: Many could be better

than all [26], Neural Network Ensembles, Cross Validation,

and Active Learning [16], Design of effective neural network

ensembles for image classification purposes [10], Evolutionary

multi-objective generation of recurrent neural network ensem-

bles for time series prediction [23] and Stochastic Multiple

Choice Learning for Training Diverse Deep Ensembles [17].

Ensemble techniques combine the output or predictions

of each neural network in a variety of different ways. This

requires significant computational cost because all of the

models must first be evaluated to generate the prediction. By

contrast, our method reduces computational cost by combining

the learning first, and making predictions later. Ensemble

techniques are also not sufficient to address applications where

data cannot be aggregated because they generally derive their

accuracy from the assumption that all of the models have

been trained to address the same problem. Our model, by

contrast, can aggregate multiple different capabilities into a
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Fig. 1. To demonstrate learning from second-hand experiences, 10 neural
networks were trained using the MNIST dataset, such that each neural network
was only shown one class of digits. Large arrows represent the raw training
data, which does not need to be aggregated at a central location for this
mode of training. Small bi-directional arrows represent the models (which
are typically orders of magnitude smaller than the raw training data) that
were exchanged between peers during training.

single model.

There have been several other approaches that allow neural

networks to train other networks. Caruana and his collab-

orators first showed that it was possible to compress the

knowledge of an ensemble into a single mode [4]. In addition

to their work researchers at Google have developed similar

algorithms [13]. Deep networks have been shown to be able

to handle much larger and more complex tasks than shallow

networks. The algorithms presented in these papers both use a

deep network to train a shallow network. Showing that shallow

networks have the potential to perform just as well on complex

tasks.

Another related approach is transfer learning [18] [22].

Transfer learning methods seek to learn in one domain, then

leverage that learning to improve learning in another domain.

This seeks to enable the newly created network to apply the

knowledge from its predecessor toward learning new tasks.

The difference is that transfer learning would be evaluated

based on the improvement to learning only in the new domain,

whereas cooperative learning would be evaluated based on the

ability to exhibit learning from both sources. Another closely

related approach is Net2Net [5], which uses an existing teacher

network to train a student network. Unlike other algorithms

that compress the model [13] [4] [5], this approach expands the

model. They have two separate algorithms: one for expanding

the number of weight within a layer and one for expanding

the number of layer in a network. Both algorithms take nodes

Fig. 2. Comparison of a model trained on all available data (blue), a model
trained in isolation on just one class of digits (red), and a model trained on just
one class of digits but also allowed to learn from the second-hand experiences
of peer neural networks (green). Second-hand learning is somewhat slower
than learning from direct experience, but eventually converges to be as
accurate as as the model trained on all of the data.

or layers from a teacher network and incorporate them into

a student network. This change in the topology makes the

training process faster because some of the weights, in the

layer, already have values. Unlike our technique, these meth-

ods involve a retraining process. Our technique fuses networks

together as they are trained, so the learning enhancements

occur at training time.

Weight averaging has been used to parallelize stochastic

gradient descent. An algorithm called HogWild [20] calculates

the gradients of parallel networks and combines the gradients

of each network to update the centralized neural network.

Another algorithm called Elastic Averaging SGD [25] finds a

running average of parallel networks as an update rule. These

methods are similar to our approach, but their objective is

different. Whereas they are attempting to obtain performance

gains, we are seeking a new mode of learning that can operate

in cases where data aggregation is prevented, and where

models can benefit from potentially dissimilar experiences of

peer models in a network.

There has also been work done with averaging the weights

of single-layer perceptrons [2], referred to as “Wagging”.

“Wagging” seeks to improve predictive accuracy for a single

layer perceptron. We seek to enable applications that require

training of multilayer perceptrons.

III. METHODS

When training a neural network, an optimization method is

applied to iteratively refine the weights of the model.

A. Model Fusion

In order two fuse two networks, we combine the weights by

calculating a pairwise weighted average of their corresponding

weights, as described in Algorithm 1. Since each weight needs

a corresponding weight, both networks need the same archi-

tecture. A “fusion rate” meta-parameter, F, balances the extent
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Algorithm 1 Weight Averaging Model Fusion

function Model Fusion(N1, N2, F )

A = weights of N1

B = weights of N2

let W be the size of A (which also the size of B).

for w ∈W do
if Aw == 0 then

Aw = Bw

else if Bw == 0 then
Bw = Aw

else
Aw = (1.0 - F)*Aw + F*Bw

Bw = (1.0 - F)*Bw + F*Aw

end if
end for
weights of N1 = A

weights of N2 = B

end function

to which each model seeks to retain its existing knowlege

with the extent to which it is willing to be influenced by

the peer model. Intuitively, this parameter directs the rate at

which information will flow throughout the network of neural

networks. The value for F ranges from 0 to 1. Values less

than 0.5 cause the neural networks to favor the knowledge

they learns from direct pattern presentations. Values greater

than 0.5 cause them to prefer knowledge gained from other

neural networks.

As a special case, non-zero weights always dominate over

corresponding weights with a value of zero, no matter what

value is used for the fusion rate. This case enables model

fusion to be used jointly with L1 regularization to promote

better utilization of the weights. Since L1 regularization drives

weights toward zero, this causes it to make room for more

knowledge to be represented.

A “fusion frequency” parameter defines the interval at which

the fusion algorithm is applied during the training process.

B. Fusion Topology

The Fusion topology is the structure of the network of

machine learning models, specifically neural networks (as

opposed to the topology of a neural network itself). These

algorithms iterate through a set of neural networks and perform

weighted average model fusion of pairs of neural networks.

We have evaluated three different fusion topologies: ring fu-

sion topology, random fusion topology, and hypercube fusion

topology.

The ring fusion topology, as described in Algorithm 2, is

similar to a ring network. Each neural network is connected

to exactly two other networks, which forms a continuous path,

a ring. Given a set of neural networks, N , we iterate through

the set combining each network to it’s neighbor. So N0 and

N1 fuses, then N1 and N2 fuse, until it comes to the end

Algorithm 2 Ring Fusion Topology

function Ring Fusion

let N be a list of neural networks.

let S be size of N.

let F be the fusion rate between 0 and 1.

for s ∈ {0, . . . , S} do
if s+1 <S then

ModelFusion(Ns, Ns+1, F )

else
ModelFusion(NS , N0, F )

end if
end for

end function

of the list. Once we reach the end of list we fuse the last

network with the first completing the circle. This accumulates

the knowledge of the each network a the fusion moves around

the ring, eventually end back at the starting network. The

starting network will then have the cumulative knowledge of

all neural network in the ring.

Algorithm 3 Random Fusion Topology

function Random Fusion

let N be a list of neural networks.

let S be size of N.

let F be the fusion rate between 0 and 1.

let R1 and R2 be uniformly distributed between 0 and S.

while S ≥ 2 do
r1 is a random value between 0 and S.

r2 is a random value between 0 and S.

ModelFusion(Nr1, Nr2, F )

S = S − 2
end while

end function

The random fusion topology, as described in Algorithm 3,

consists of a set of neural networks, where random connections

are made between networks in every time model fusion is

performed. Given a set of neural networks, N , we make

random connections between neural networks where every

network is connected to another random network. In the case

where there is an odd number of networks, one network will

be randomly fused with two other networks. All connections

are reset every time fusion is performed. So as fusion is

performed different pairs of networks are learning from each

other and over time every network will communicate with

every other network. This will allow the cumulative knowledge

to stochastically be passed around over time.

The hypercube topology is based upon a hypercube graph.

Hypercube graphs, also called a n-cube graph, consists of

2n vertices and 2n−1n edges. A 2-cube graph would be a

square and a 3-cube graph would be a cube. Hypercube graphs

have been proven to be very power topologies [21] [7]. One
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Algorithm 4 Hypercube Fusion Topology

function Hypercube Fusion

let N be a list of neural networks, that is represented a

n bit binary number.

let S be size of N.

let F be the fusion rate between 0 and 1.

for x ∈ {0, . . . , n} do
for s ∈ {0, . . . , S} do
b = binary number of Ns, with the x bit inverted.

ModelFusion(Ns, Nb, F )

end for
end for

end function

of the more attractive properties of a hypercube is its small

diameter. Diameter is the maximum number of links between

any vertices of a graph, for hypercubes the diameter is n. For

model fusion we pass defines each vertex of this graph is a

neural network.

Each neural network is combined with each of its neigh-

boring neural networks. So for a n-cube graph, each network

is fused with n neural networks, as described in Algorithm 4.

This is seeks to take advantage of the small diameter that exists

within hypercube graphs. The small diameter facilitates the

quick transmission of knowledge between any two networks

in the graph, which should allow the individual knowledge of

each neural network to be distributed among it’s peers evenly.

IV. RESULTS

In this section, we present empirical results that show

how weight averaging model fusion affects the transfer of

knowledge during iterative learning processes with neural

networks. We ran all tests on 5 different datasets: MNIST,

CIFAR, Vowel, Image Segmentation, and Wisconsin breast

cancer. For all of our experiments every network we used was

a feed forward neural networks and the tanh activation func-

tion. These experiments were coded using C++ and Waffles

machine learning library [9]. We ran these experiments on 4-

core Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz machine

with 16 GB of RAM.

A. Model Fusion

We evaluated our new technique by running two experi-

ments. For the first test we created a set of 10 neural networks

and trained each of them all an individual digit from the

MNIST dataset. During the training process we periodically

combine the neural networks together so that all 10 networks

can learn to recognize all ten digits. We compare the neural

network that resulted from model fusion to a single neural

network that had been trained on all ten digits and another

single neural network that had only on images of a single

digit.

We use these two neural networks to create ideal perfor-

mance bounds for our algorithm. If the algorithm does not

Fig. 3. Comparison of the percent error over time for a network that has
trained on all of the data (All Data), one that has trained on part of the data
(Partial Data), and the result of different fusion topology techniques Random,
Ring an Hypercube. All of the networks in this problem had a learning rate of
0.01 , two hidden layers of 80 and 30 nodes, fusion rate of .55, and a fusion
frequency of one epoch.

TABLE I
TABLE OF PREDICTIONS

Percent Error
Dataset Min Max Ring Random Hyper-

cube
MNIST 0.0294 0.0666 0.0292 0.0334 0.0299
CIFAR 0.691131 0.80082 0.718728 0.706829 0.69753
Vowel 0.3752 0.5011 0.3557 0.3687 0.3752
Segment 0.0317 0.0981 0.0418 0.0505 0.0389
Breast-W 0.00971 0.0291 0.00971 0.00971 0.0145

introduce any new knowledge to the networks being fused,

then they will perform as if they had only been trained on

images of a single digit. If the algorithm each network teaches

all of the other networks to recognize it’s assigned digit, then

any one of those networks will perform as well as a single

neural network that has been trained on all of the digits. As

shown in Figure 2, the network trained using images of just

one digit achieved around 88 percent error and the network

trained on images of all ten digits achieved around 3 percent

error. The results demonstrate that while learning from the

experience of other neural networks is slower than learning

from direct experiences, it still achieves comparable levels of

accuracy.

The second test we created a collection of 8 neural networks,

where each network was trained on a random subsample of

the data. We compared the final results of Model fusion to

a single neural network that has trained using all of the

data and a single neural network that trained using an eighth

of the data. As before, these two single neural networks

serve as performance bounds that provide perspective on the

performance of weighted average model fusion. Unlike the

first test, these neural networks are only restricted by how

much data they are given, not by what data they are given.

For each of the problems we optimized the individual

networks that we are using for comparison. So for each

problem we performed grid search to find the optimal learning

rate and chose an architecture that performed reasonably well
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Fig. 4. Comparison of the percent error over time for a network that has
trained on all of the data (All Data), one that has trained on part of the data
(Partial Data), and the result of different fusion topology techniques Random,
Ring an Hypercube. All of the networks in this problem had a learning rate of
0.04 , two hidden layers of 50 and 20 nodes, fusion rate of .55, and a fusion
frequency a fusion frequency of one epoch.

using non-model fusion networks. Each network was trained

using stochastic gradient descent. Varying topologies were

used amongst the various problems. For cifar we used 3 hidden

layers 3000, 1000 and 10 nodes each, for mnist we used two

hidden layers of 80 and 30 nodes, for the vowel and segment

datasets we used two hidden layers of 50 and 20 nodes, and

for breast-w dataset we used one hidden layer of 8 nodes.

We report the percent error and show how it decreases over

time. In all 5 examples, model fusion achieves comparable

accuracy as the individual network that was trained on all of

the data. This is significant because each model in the model

fusion case was limited to training with a small portion of the

data.

Figure 3 and Figure 4 report the results from the vowel and

MNIST tests, respectively. In both cases, Model Fusion takes

more time to converge than the network that has trained on

all of the data, but it does make predictions with comparable

accuracy. When we tested Model Fusion on the vowel dataset

the single model, that trained on all of the data, overfit to

the data, decreasing in accuracy, but the model fusion did

not. Table 1 reports the percent error for all four experiments.

These results demonstrate how Model Fusion enables neural

networks to obtain the same level of accuracy as a neural

network trained on all of the data. By obtaining this level

of accuracy it proves the weighted average model fusion will

allow neural networks to teach each other. If model fusion

had not worked the prediction accuracy would be closer to

that of the network trained on a subset of the data. However,

in every experiment weighted average model fusion achieved

an accuracy within one percent of the network trained on all

of the data.

B. Meta Parameters

Model Fusion has two meta-parameters: fusion rate and

fusion frequency. In these experiments we demonstrate the

effects each meta-parameter has on the accuracy of model

Fig. 5. A plot of error measured with several different datasets after 1000
training epochs while applying fusion at a constant interval, but using varying
values for the fusion rate meta parameter. These results exhibit a surprising
robustness to the fusion rate parameter, indicating that almost any non-zero
value will lead to effective transfer of knowledge between neural networks.
Results with ring and hypercube topologies were also obtained. Those exhibit
similar trends to those shown in this representative chart.

fusion and therefore draw conclusions on the effects these

parameters plan in the learning process. These two meta-

parameters may be dependent upon each other; so in order to

remove that bias we optimized both of them. We then used the

optimal value for the fusion rate in the frequency experiment

and the optimal frequency value in the fusion rate experiment.

1) Fusion Rate: In order to understand the effects of the

fusion rate, we ran 4 tests on the datasets from the UCI

classification dataset collection: vowel, breast-w, segment, and

splice using all three fusion topologies. For each dataset we ran

the fusion algorithms on 8 different networks. We compared

the resulting accuracy of all fusion rates from 0.00 to 0.99,

with a step size of 0.01.

For the experiments using the random fusion topology,

the error remained consistent across a wide range of fusion

rate above. In the experiments using ring fusion topology

and hypercube fusion topology a similar trend held true.

These results demonstrates model fusion’s robustness to the

fusion rate parameter, which indicates that effective transfer of

knowledge between neural networks is not heavily dependent

upon the weight given to each network.

2) Fusion Frequency: In order to discover the effects that

fusion frequency has on the accuracy of the fusion we con-

ducted tests on 4 datasets from the UCI classification dataset

collection vowel, breast-w, segment, and splice. We ran this

test for all three fusion topologies. For each dataset we tested

the values from 1 epoch to 100 epochs, with a step size of 1.

For all three types a fusion, the error increased the less

frequently the fusion occurred. The experiments on the vowel

dataset show a consistent trend of the larger the fusion

frequency the less accurate the models become. However, this

is not always true when viewing the trend at smaller intervals.

There several small intervals in all three tests where increasing
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Fig. 6. A plot of error measured with several different datasets after 1000
training epochs while applying fusion at varying intervals. As might be
intuitively expected, more frequent fusion generally results in better accuracy
with all of the datasets. These results were obtained using the random fusion
topology. Results with ring and hypercube topologies were also obtained.
Those exhibit similar trends to those shown in this representative chart.

the fusion frequency decreased the error in the predictions.

The sporadic changes that exist within all of our experi-

ments suggest that the fusion frequency is problem dependent

and is something that needs to be tuned much like a learning

rate. Nevertheless the overall trend for more frequent fusions

leading to more accurate results seems to hold true in all cases.

So in choosing a fusion frequency, these results suggest that,

lower values tend to produce more accurate results.

V. CONCLUSIONS

We presented an algorithm that enables neural networks,

with only a subset of training data, to learn from each other

while still achieving levels of accuracy comparable to, or

better than, an individual network trained on all available data.

We conducted five experiments and in all five our approach

made predictions within one percent accuracy of the individual

model trained on all of the data. This demonstrates that

weighted average model fusion can achieve comparable levels

of accuracy by allowing neural networks to teach each other.

We explored how the meta-parameters fusion rate and fusion
frequency affected the accuracy of model fusion. For all fusion

topologies model fusion exhibited robustness to the fusion

parameter, learning effectively for almost all non-zero values.

Higher fusion frequencies made more accurate predictions,

but at a more granular level they had sporadic effects on the

accuracy of model fusion.
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